Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway.
View Article and Find Full Text PDFMeasurements of external contaminant exposures on individual wildlife are rare because of difficulties in using contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated with computer models. Rarely are empirical exposure data available to verify model simulations, or to test fundamental assumptions inherent in exposure assessments.
View Article and Find Full Text PDFHuman activities have radically shaped the global landscape, affecting the structure and function of ecosystems. Habitat loss is one of the most visible changes to the landscape and a primary driver of species declines; however, anthropogenic environmental contamination also threatens population persistence, but is not as readily observed. Aquatic organisms are especially susceptible to chemical perturbations, which can negatively impact survival and fitness related traits.
View Article and Find Full Text PDFAmphibian diseases, such as chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) and ranaviral disease caused by ranaviruses, are often linked to global amphibian population declines, yet the ecological dynamics of both pathogens are poorly understood. The goal of our study was to determine the baseline prevalence, pathogen loads, and co-infection rate of Bd and ranavirus across the Savannah River Site (SRS) in South Carolina, USA, a region with rich amphibian diversity and a history of amphibian-based research. We tested over 1000 individuals, encompassing 21 amphibian species from 11 wetlands for both Bd and ranavirus.
View Article and Find Full Text PDFSeveral wading bird species in the southeastern US have a history of infection by hematozoa/avian malaria as well as mercury accumulation through their diet, and thus may be exposed to two, generally sublethal, yet chronic, stressors. We analyzed nestling wading birds (n = 171) of varying size and trophic position from the southeastern US, and a smaller sample (n = 23) of older, free-ranging birds, to look for potential interrelationships between infection by hematozoa and mercury (Hg) uptake. Only one nestling was PCR positive for hematozoa (Plasmodium/Haemoproteus) whereas nine (39%) of the older wading birds were positive.
View Article and Find Full Text PDFDevelopment and optimization of novel species-specific microsatellites, or simple sequence repeats (SSRs) remains an important step for studies in ecology, evolution, and behavior. Numerous approaches exist for identifying new SSRs that vary widely in terms of both time and cost investments. A recent approach of using paired-end Illumina sequence data in conjunction with the bioinformatics pipeline, PAL_FINDER, has the potential to substantially reduce the cost and labor investment while also improving efficiency.
View Article and Find Full Text PDF