Multivariate Behav Res
July 2024
Idiographic measurement models such as p-technique and dynamic factor analysis (DFA) assess latent constructs at the individual level. These person-specific methods may provide more accurate models than models obtained from aggregated data when individuals are heterogeneous in their processes. Developing clustering methods for the grouping of individuals with similar measurement models would enable researchers to identify if measurement model subtypes exist across individuals as well as assess if the different models correspond to the same latent concept or not.
View Article and Find Full Text PDFPurpose: To assess health-related quality of life (HRQOL) among adolescents and young adults (AYAs) with chronic conditions.
Methods: AYAs (N = 872) aged 14-20 years completed NIH's Patient-Reported Outcomes Measurement Information System (PROMIS) measures of physical function, pain interference, fatigue, social health, depression, anxiety, and anger. Latent profile analysis (LPA) was used to group AYAs into HRQOL profiles using PROMIS T-scores.
The impact of chronic diseases on health-related quality of life (HRQOL) in adolescents and young adults (AYAs) is understudied. Latent profile analysis (LPA) can identify profiles of AYAs based on their HRQOL scores reflecting physical, mental, and social well-being. This paper will (1) demonstrate how to use LPA to identify profiles of AYAs based on their scores on multiple HRQOL indicators; (2) explore associations of demographic and clinical factors with LPA-identified HRQOL profiles of AYAs; and (3) provide guidance on the selection of adult or pediatric versions of Patient-Reported Outcomes Measurement Information System® (PROMIS®) in AYAs.
View Article and Find Full Text PDF