Human aging is characterized by gut microbiome alteration and differential loss of gut commensal species associated with the onset of frailty. The administration of cultured commensal strains to replenish lost taxa could potentially promote healthy aging. To investigate the interaction of whole microbiomes and administered strains, we transplanted gut microbiota from a frail or healthy elderly subject into germ-free mice.
View Article and Find Full Text PDFBackground: Typically, animal models studying gastrointestinal microbiotas compromised in early life have employed either germ-free animals or mice treated with a cocktail of antibiotics. Such studies intend to mimic scenarios of infants born by caesarean section and/or subjected to antibiotic treatment. However, the antibiotics used in these studies are rarely prescribed to infants.
View Article and Find Full Text PDFA high-fat (HF) diet reduces resistance to the foodborne pathogen . We demonstrate that short-term gavage with increases resistance to oral and systemic infection in mice fed a HF diet. reduced inflammation in the gut and liver of mice fed a high-fat diet prior to infection and reduced inflammatory cell infiltration in the ileum to levels similar to mice fed a low-fat (LF) diet.
View Article and Find Full Text PDFis a prevalent gut microbe reported to occur in higher abundance among individuals with inflammatory bowel disease (IBD). This study reports the isolation and characterization of six bacteriophages (phages) isolated from human fecal material and environmental samples that infect this species. Isolated phages have a siphovirus morphology, with genomes ranging between 36.
View Article and Find Full Text PDFThe mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum.
View Article and Find Full Text PDFStress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored.
View Article and Find Full Text PDFBackground: The crAss-like phages are ubiquitous and highly abundant members of the human gut virome that infect commensal bacteria of the order Bacteroidales. Although incapable of lysogeny, these viruses demonstrate long-term persistence in the human gut microbiome, dominating the virome in some individuals.
Results: Here we show that rapid phase variation of alternate capsular polysaccharides in Bacteroides intestinalis cultures plays an important role in a dynamic equilibrium between phage sensitivity and resistance, allowing phage and bacteria to multiply in parallel.
Adolescence is an important stage of maturation for various brain structures. It is during this time therefore that the brain may be more vulnerable to environmental factors such as diet that may influence mood and memory. Diets high in fat and sugar (termed a cafeteria diet) during adolescence have been shown to negatively impact upon cognitive performance, which may be reversed by switching to a standard diet during adulthood.
View Article and Find Full Text PDFSignificant evidence supports a relationship between the gut microbiome, inflammation, host response, and health, including the finding that a number of disorders are associated with disruption of the microbiome. In these disorders, a number of dietary interventions (including prebiotics, live probiotics, or heat-killed microbes) have been proposed to be curative or preventative agents. The use of heat-killed microbes has a number of benefits over living organisms, including reduced infection risk in vulnerable individuals, extended shelf life and the potential for use in combination with antimicrobial agents.
View Article and Find Full Text PDFBoth neuroinflammation and adult hippocampal neurogenesis (AHN) are implicated in many neurodegenerative disorders as well as in neuropsychiatric disorders, which often become symptomatic during adolescence. A better knowledge of the impact that chronic neuroinflammation has on the hippocampus during the adolescent period could lead to the discovery of new therapeutics for some of these disorders. The hippocampus is particularly vulnerable to altered concentrations of the pro-inflammatory cytokine interleukin-1β (IL-1β), with elevated levels implicated in the aetiology of neurodegenerative disorders such as Alzheimer's and Parkinson's, and stress-related disorders such as depression.
View Article and Find Full Text PDFIn response to stressor exposure, expression of the inflammatory cytokine interleukin-1β (IL-1) is increased within the paraventricular nucleus of the hypothalamus (PVN). Surgical removal of the adrenal glands (ADX) potentiated stress-induced IL-1 expression, suggesting a role for adrenal-derived hormones in constraining stress-evoked increases in IL-1. While corticosterone (CORT) is a primary factor inhibiting IL-1 expression, progesterone (PROG) is also released by the adrenal glands in male rats in response to stress and also has potent anti-inflammatory properties.
View Article and Find Full Text PDFRecently it has been proposed to expand the definition of psychobiotics (beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that positively impact mental health) to any exogenous influence whose effect on the brain is bacterially-mediated. This definition would include inactivated microorganisms with anxiolytic and antidepressant effects. The use of inactivated microorganisms has several advantages over living organisms, including no risk of infection in vulnerable individuals and ease of use in terms of storage and delivery options.
View Article and Find Full Text PDFUnderstanding the long-term consequences of chronic inflammation in the hippocampus may help to develop therapeutic targets for the treatment of cognitive disorders related to stress, ageing and neurodegeneration. The hippocampus is particularly vulnerable to increases in the pro-inflammatory cytokine interleukin-1β (IL-1β), a mediator of neuroinflammation, with elevated levels implicated in the aetiology of neurodegenerative diseases such as Alzheimer's and Parkinson's, and in stress-related disorders such as depression. Acute increases in hippocampal IL-1β have been shown to impair cognition and reduce adult hippocampal neurogenesis, the birth of new neurons.
View Article and Find Full Text PDFTLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus.
View Article and Find Full Text PDFHippocampal neurogenesis and associated cognitive behaviors are regulated by a number of factors including stress, inflammation, and exercise. However, the interplay between these factors remains relatively unexplored, especially across the lifespan. In the current study, the effect of social isolation stress during the adolescent period on neurogenesis and hippocampal-dependent cognitive behaviors was examined.
View Article and Find Full Text PDFThe orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis.
View Article and Find Full Text PDFExtensive evidence highlights the role of inflammatory processes in major depressive disorder (MDD). However, most studies have examined a consistent set of inflammatory cytokines and there is evidence that other immune-derived products may play a role in MDD. In this article, we present data from 3 complimentary studies that support the role of a novel cytokine, interleukin-33 (IL-33), in depression risk.
View Article and Find Full Text PDFThe nuclear receptor Tlx is a key regulator of embryonic and adult hippocampal neurogenesis and has been genetically linked to bipolar disorder. Mice lacking Tlx (Nr2e1(-/-)) display deficits in adult hippocampal neurogenesis and behavioural abnormalities. However, whether Tlx regulates behaviour during adolescence or in a sex-dependent manner remains unexplored.
View Article and Find Full Text PDFExposure to stressors such as foot shock (FS) leads to increased expression of multiple inflammatory factors, including the proinflammatory cytokine interleukin-1 (IL-1) in the brain. Studies have indicated that there are sex differences in stress reactivity, suggesting that the fluctuations in gonadal steroid levels across the estrous cycle may play a regulatory role in the stress-induced cytokine expression. The present studies were designed to investigate the role of 17-β-estradiol (E2) and progesterone (Pg) in regulating the cytokine response within the paraventricular nucleus (PVN) of the hypothalamus through analysis of gene expression with real-time RT-PCR.
View Article and Find Full Text PDFStress leads to neuroinflammatory and behavioral consequences through upregulation of inflammatory-related cytokines within the central nervous system such as interleukin-1β (IL-1β), which may be indicative of microglial priming/activation. Evidence suggests that the P2X7 receptor (P2X7R) may play an important role in the synthesis and conversion of IL-1β. In a series of six experiments, adult male rats were intubated with a highly selective P2X7R antagonist (A-804598) before footshock exposure.
View Article and Find Full Text PDFAlthough progesterone is most commonly regarded in terms of its role in the female estrous cycle, reproductive behavior, and pregnancy, progesterone is also a precursor to corticosterone (CORT) and is released from the adrenal glands of both sexes in response to stress. However, the relationship between plasma CORT and progesterone during times of stress has not been well established. To better characterize dynamic changes in progesterone release as a result of stressor exposure, plasma progesterone levels were measured using enzyme immunoassay under multiple conditions, including after stress exposure (footshock, restraint, and forced swim), manipulations of the hypothalamic-pituitary-adrenal axis (injection of metyrapone or dexamethasone, or adrenalectomy), and in response to CRH and ACTH injections.
View Article and Find Full Text PDFAcute stress increases the expression of cytokines and other inflammatory-related factors in the CNS, plasma, and endocrine glands, and activation of inflammatory signaling pathways within the hypothalamic-pituitary-adrenal (HPA) axis may play a key role in later stress sensitization. In addition to providing a summary of stress effects on neuroimmune changes within the CNS, we present a series of experiments that characterize stress effects on members of the interleukin-1β (IL-1) super-family and other inflammatory-related genes in key structures comprising the HPA axis (PVN, pituitary and adrenal glands), followed by a series of experiments examining the impact of exogenous hormone administration (CRH and ACTH) and dexamethasone on the expression of inflammatory-related genes in adult male Sprague-Dawley rats. The results demonstrated robust, time-dependent, and asynchronous expression patterns for IL-1 and IL-1R2 in the PVN, with substantial increases in IL-6 and COX-2 in the adrenal glands emerging as key findings.
View Article and Find Full Text PDFThe impact of acute stress on inflammatory signaling within the central nervous system is of interest because these factors influence neuroendocrine function both directly and indirectly. Exposure to certain stressors increases expression of the proinflammatory cytokine, Il-1β in the hypothalamus. Increased IL-1 is reciprocally regulated by norepinephrine (stimulatory) and corticosterone (inhibitory), yet neural pathways underlying increased IL-1 have not been clarified.
View Article and Find Full Text PDFAccumulating evidence supports the value of 5-HT1A receptor (5-HT1AR) agonists for dyskinesias that arise with long-term L-DOPA therapy in Parkinson's disease (PD). Yet, how 5-HT1AR stimulation directly influences the dyskinetogenic D1 receptor (D1R)-expressing striatonigral pathway remains largely unknown. To directly examine this, one cohort of hemiparkinsonian rats received systemic injections of Vehicle + Vehicle, Vehicle + the D1R agonist SKF81297 (0.
View Article and Find Full Text PDF