Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement.
View Article and Find Full Text PDFPlant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin.
View Article and Find Full Text PDFLarge differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form.
View Article and Find Full Text PDFFood Energy Secur
November 2020
Pressures of population growth and climate change require the development of resilient higher yielding crops, particularly to drought. A spring wheat diversity panel was developed to combine high-yield potential with resilience. To assess performance under drought, which in many environments is intermittent and dependent on plant development, 150 lines were grown with drought imposed for 10 days either at jointing or at anthesis stages in Obregon, Mexico.
View Article and Find Full Text PDFThe domestication and breeding of crops has been a major achievement for mankind enabling the development of stable societies and civilisation. Crops have become more productive per unit area of cultivated land over the course of domestication supporting a current global population of 7.8 billion.
View Article and Find Full Text PDFAlthough sugar regulates photosynthesis, the signalling pathways underlying this process remain elusive, especially for C4 crops. To address this knowledge gap and identify potential candidate genes, we treated Setaria viridis (C4 model) plants acclimated to medium light intensity (ML, 500 µmol m-2 s-1) with low (LL, 50 µmol m-2 s-1) or high (HL, 1000 µmol m-2 s-1) light for 4 d and observed the consequences on carbon metabolism and the transcriptome of source leaves. LL impaired photosynthesis and reduced leaf content of signalling sugars (glucose, sucrose, and trehalose-6-phosphate).
View Article and Find Full Text PDFUnderstanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited.
View Article and Find Full Text PDFT6P can be targeted through genetic and chemical methods for crop yield improvements in different environments through the effect of T6P on carbon allocation and biosynthetic pathways.
View Article and Find Full Text PDFTransgenic maize () that expresses rice () () from the rice promoter, which is active over the flowering period, produces higher yields than wild type. This yield increase occurs with or without drought conditions during flowering. To understand the mechanistic basis of the increased yield, we characterized gene expression and metabolite profiles in leaves and developing female reproductive tissue, comprising florets, node, pith, and shank, over the flowering period with and without drought.
View Article and Find Full Text PDFFood security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate.
View Article and Find Full Text PDFCurrent methods of crop improvement are not keeping pace with projected increases in population growth. Breeding, focused around key traits of stem height and disease resistance, delivered the step-change yield improvements of the green revolution of the 1960s. However, subsequently, yield increases through conventional breeding have been below the projected requirement of 2.
View Article and Find Full Text PDFBackground: Drought stress during flowering is a major contributor to yield loss in maize. Genetic and biotechnological improvement in yield sustainability requires an understanding of the mechanisms underpinning yield loss. Sucrose starvation has been proposed as the cause for kernel abortion; however, potential targets for genetic improvement have not been identified.
View Article and Find Full Text PDFThe pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development.
View Article and Find Full Text PDFMetabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail.
View Article and Find Full Text PDFLittle is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants.
View Article and Find Full Text PDFResearch into extreme drought tolerance in resurrection plants using species such as Craterostigma plantagineum, C. wilmsii, Xerophyta humilis, Tortula ruralis, and Sporobolus stapfianus has provided some insight into the desiccation tolerance mechanisms utilized by these plants to allow them to persist under extremely adverse environmental conditions. Some of the mechanisms used to ensure cellular preservation during severe dehydration appear to be peculiar to resurrection plants.
View Article and Find Full Text PDFIsolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance.
View Article and Find Full Text PDFBackground: Glucosinolates, a group of nitrogen and sulfur containing compounds associated with plant-insect interactions, are produced by a number of important Brassicaceae crop species. In Arabidopsis the AOP2 gene plays a role in the secondary modification of aliphatic (methionine-derived) glucosinolates, namely the conversion of methylsulfinylalkyl glucosinolates to form alkenyl glucosinolates, and also influences aliphatic glucosinolate accumulation.
Results: This study characterises the primary structural variation in the coding sequences of the AOP2 gene and identifies three different AOP2 alleles based on polymorphisms in exon two.