beta-Carotene radicals produced in the hexagonal pores of the molecular sieve Cu(II)-MCM-41 were studied by ENDOR and visible/near-IR spectroscopies. ENDOR studies showed that neutral radicals of beta-carotene were produced in humid air under ambient fluorescent light. The maximum absorption wavelengths of the neutral radicals were measured and were additionally predicted by using time-dependent density functional theory (TD-DFT) calculations.
View Article and Find Full Text PDFCurr Opin Chem Biol
February 2009
Directed evolution can generate a remarkable range of new enzyme properties. Alternate substrate specificities and reaction selectivities are readily accessible in enzymes from families that are naturally functionally diverse. Activities on new substrates can be obtained by improving variants with broadened specificities or by step-wise evolution through a sequence of more and more challenging substrates.
View Article and Find Full Text PDFPhotosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680(+). We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and beta-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at cryogenic temperatures. In contrast to previous results for Mn-depleted PS II, multiple near-IR absorption bands are resolved in the light-minus-dark difference spectra of oxygen-evolving PS II core complexes including two fast-decaying bands at 793 and 814 nm and three slow-decaying bands at 810, 825, and 840 nm.
View Article and Find Full Text PDFBeta-carotene (Car) and chlorophyll (Chl) function as secondary electron donors in photosystem II (PS II) under conditions, such as low temperature, when electron donation from the O(2)-evolving complex is inhibited. In prior studies of the formation and decay of Car(*+) and Chl(*+) species at low temperatures, cytochrome b(559) (Cyt b(559)) was chemically oxidized prior to freezing the sample. In this study, the photochemical formation of Car(*+) and Chl(*+) is characterized at low temperature in O(2)-evolving Synechocystis PS II treated with ascorbate to reduce most of the Cyt b(559).
View Article and Find Full Text PDFBeta-carotene has been identified as an intermediate in a secondary electron transfer pathway that oxidizes Chl(Z) and cytochrome b(559) in Photosystem II (PS II) when normal tyrosine oxidation is blocked. To test the redox function of carotenoids in this pathway, we replaced the zeta-carotene desaturase gene (zds) or both the zds and phytoene desaturase (pds) genes of Synechocystis sp. PCC 6803 with the phytoene desaturase gene (crtI) of Rhodobacter capsulatus, producing carotenoids with shorter conjugated pi-electron systems and higher reduction potentials than beta-carotene.
View Article and Find Full Text PDFPhotosynth Res
September 2005
Resonance Raman (RR) spectroscopy has been used to examine the configuration of the carotenoids bound to Synechocystis PCC 6803 Photosystem II (PS II) core complexes. The excitation wavelengths used (514.5, 488.
View Article and Find Full Text PDFPhotosystem II (PS II) contains secondary electron-transfer paths involving cytochrome b(559) (Cyt b(559)), chlorophyll (Chl), and beta-carotene (Car) that are active under conditions when oxygen evolution is blocked such as in inhibited samples or at low temperature. Intermediates of the secondary electron-transfer pathways of PS II core complexes from Synechocystis PCC 6803 and Synechococcus sp. and spinach PS II membranes have been investigated using low temperature near-IR spectroscopy and electron paramagnetic resonance (EPR) spectroscopy.
View Article and Find Full Text PDF