Publications by authors named "Caprio J"

Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity.

View Article and Find Full Text PDF

Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction.

View Article and Find Full Text PDF

Olfaction mediates many crucial life-history behaviors such as prey detection, predator avoidance, migration and reproduction. Olfactory function can also be modulated by an animal's internal physiological and metabolic states. While this is relatively well studied in mammals, little is known about how internal state impacts olfaction in fishes, the largest and most diverse group of vertebrates.

View Article and Find Full Text PDF

The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.

View Article and Find Full Text PDF

The epibranchial organ (EO) is an enigmatic tubular organ found in the pharyngeal cavity of many filter-feeding fishes. We investigated whether it might function as a taste organ that mediates aggregation and ingestion of planktonic food within the buccal cavity. The EO and associated structures of bighead and silver carps, two successful and invasive planktivorous fishes, were examined using histological and electrophysiological techniques.

View Article and Find Full Text PDF

We report that the Japanese sea catfish Plotosus japonicus senses local pH-associated increases in H(+)/CO2 equating to a decrease of ≤0.1 pH unit in ambient seawater. We demonstrated that these sensors, located on the external body of the fish, detect undamaged cryptic respiring prey, such as polychaete worms.

View Article and Find Full Text PDF

Odor detection in vertebrates occurs when odorants enter the nose and bind to molecular olfactory receptors on the cilia or microvilli of olfactory receptor neurons (ORNs). Several vertebrate groups possess multiple, morphologically distinct types of ORNs. In teleost fishes, these different ORN types detect specific classes of biologically relevant odorants, such as amino acids, nucleotides and bile salts.

View Article and Find Full Text PDF

The present study investigates for the first time in any teleost the amino acid specificity and sensitivity of single glossopharyngeal (cranial nerve IX) fibers that innervate taste buds within the oropharyngeal cavity. These results are contrasted with similar data obtained from facial (cranial nerve VII) fibers that innervate extraoral taste buds. The major finding is that functional differences are clearly evident between taste fibers of these two cranial nerves.

View Article and Find Full Text PDF

Bile salts are known olfactory stimuli for teleosts, but only a single report has indicated that the taste system of a fish was sensitive to this class of stimuli. Here, gustatory responses of the channel catfish, Ictalurus punctatus, to four bile salts that included taurine-, glycine- and non-conjugated compounds along with three stimulatory amino acids as a comparison were investigated using extracellular electrophysiological techniques. Integrated multiunit responses were obtained from the branch of the facial nerve innervating taste buds on the maxillary barbel.

View Article and Find Full Text PDF

Neural oscillations, which appear in several areas of the nervous system and cover a wide frequency range, are a prominent issue in current neuroscience. Extracellularly recorded oscillations are generally thought to be a manifestation of a neural population with synchronized electrical activity resulting from coupling mechanisms. The vertebrate olfactory neuroepithelium exhibits beta-band oscillations, termed peripheral waves (PWs), in their population response to odor stimulation.

View Article and Find Full Text PDF

Odorant specificity to l-alpha-amino acids was determined electrophysiologically for 93 single catfish olfactory receptor neurons (ORNs) selected for their narrow excitatory molecular response range (EMRR) to only one type of amino acid (i.e., Group I units).

View Article and Find Full Text PDF

A chemotopic map of biologically relevant odorants (that include amino acids, bile salts, and nucleotides) exists in the olfactory bulb (OB) of channel catfish, Ictalurus punctatus. Neurons processing bile salt odorant information lie medially within this OB map; however, information as to how single neurons process bile salt odorant information is lacking. In the present report, recordings were obtained from 51 OB neurons from 30 channel catfish to determine the excitatory molecular receptive range (EMRR) of bile salt responsive neurons.

View Article and Find Full Text PDF

A paucity of information exists concerning the processing of odorant information by single neurons in any vertebrate above the level of the olfactory bulb (OB). In this report, odorant specificity to four types of L-alpha-amino acids (neutral with long side-chains, neutral with short side-chains, basic and acidic), known biologically relevant odorants for teleosts, was determined for 217 spontaneously active forebrain (FB) neurons in the channel catfish. Group I FB units were identified that were excited by only one of four types of amino acids; no Group I unit was encountered that was excited by an acidic amino acid.

View Article and Find Full Text PDF

We report electrophysiological evidence that a simple odotopy, the spatial mapping of different odorants, is maintained above the level of the olfactory bulb (OB). Three classes of biologically relevant odorants for fish are processed in distinct regions of the forebrain (FB) in the channel catfish. Feeding cues, mainly amino acids and nucleotides, are represented in lateral, pallial portions of the FB, equivalent to the olfactory cortex of amniote vertebrates, whereas social signals mediated by bile salts are represented in medial FB centers, possibly homologous to portions of the amygdala.

View Article and Find Full Text PDF

Odorant specificity to l-alpha-amino acids was determined for 245 olfactory bulb (OB) neurons recorded from 121 channel catfish. The initial tests included 4 amino acids representing acidic [monosodium glutamate (Glu)], basic [arginine (Arg)], and neutral [possessing short: alanine (Ala) and long: methionine (Met) side chains] amino acids that were previously indicated to bind to independent olfactory receptor sites. Ninety-one (37%) units (Group I) tested at 1, 10, and 100 microM showed high selectivity and were excited by only one of the 4 amino acids.

View Article and Find Full Text PDF

The olfactory epithelium of fish contains three intermingled types of olfactory receptor neurons (ORNs): ciliated, microvillous, and crypt. The present experiments were undertaken to test whether the different types of ORNs respond to different classes of odorants via different families of receptor molecules and G-proteins corresponding to the morphology of the ORN. In catfish, ciliated ORNs express OR-type receptors and Galpha(olf).

View Article and Find Full Text PDF

Electrophysiological responses of goldfish olfactory receptor neurons (ORNs) and goldfish behavioral responses to polyamines were investigated in vivo. Electro-olfactogram (EOG) recordings indicated that polyamines (putrescine, cadaverine and spermine) are potent olfactory stimuli for goldfish with estimated electrophysiological thresholds of 10(-8)-10(-7) mol l(-1), similar to that for L-arginine, the most stimulatory amino acid. Although thresholds were similar, the magnitude of the EOG responses to intermediate (10(-5)-10(-4) mol l(-1)) and high (10(-3) mol l(-1)) concentrations of polyamines dwarfed the responses to amino acids and related single amine containing compounds (amylamine and butylamine).

View Article and Find Full Text PDF

Background: The standard treatment for abdominal aortic aneurysms (AAA) >55 mm is actually represented by surgical repair mainly or by endovascular repair, in selected cases; conversely the debate is still open for those ranging 40-55 mm. These last and smaller aneurysms are usually followed-up by ultrasounds (US), in order to detect too fast expansions and to prevent sudden ruptures. Aim of this study is to present the results of the US follow-up of a series of asymptomatic AAAs and the correlation between expansion rate and associated risk factors.

View Article and Find Full Text PDF

Recently, it has become clear that dendritic cells (DCs) are essential for the priming of T cell responses. However, their role in the maintenance of peripheral T cell tolerance remains largely undefined. Herein, an antigen-presenting cell (APC) transfer system was devised and applied to experimental allergic encephalomyelitis (EAE), to evaluate the contribution that DCs play in peripheral T cell tolerance.

View Article and Find Full Text PDF

Peripheral waves (PWs) in the channel catfish are odorant-induced neural oscillations of synchronized populations of olfactory receptor neurons (ORNs) that appear after the initial approximately 500 msec of the response. The mean dominant frequency during the initial 2 sec of PW activity is approximately 28 Hz, declining to approximately 20 Hz in the last sec of a 5 sec stimulus. Recordings of PWs from different regions of a single olfactory lamella and simultaneously from widely separated lamellae within the olfactory organ suggest that PWs are initiated in the sensory epithelium within each olfactory lamella.

View Article and Find Full Text PDF

Peripheral tolerance, represents an attractive strategy to down-regulate previously activated T cells and suppress an ongoing disease. Herein, immunoglobulins (Igs) were used to deliver self and altered self peptides for efficient peptide presentation without costimulation to test for modulation of experimental allergic encephalomyelitis (EAE). Accordingly, the encephalitogenic proteolipid protein (PLP) sequence 139-151 (referred to as PLP1) and an altered form of PLP1 known as PLP-LR were genetically expressed on Igs and the resulting Ig-PLP1 and Ig-PLP-LR were tested for efficient presentation of the peptides and for amelioration of ongoing EAE.

View Article and Find Full Text PDF

Extracellular electrophysiological recordings from single olfactory bulb (OB) neurons in the channel catfish, Ictalurus punctatus, indicated that the OB is divided into different functional zones, each processing a specific class of biologically relevant odor. Different OB regions responded preferentially at slightly above threshold to either a mixture of 1) bile salts (10(-7) to 10(-5) M Na(+) salts of taurocholic, lithocholic, and taurolithocholic acids), 2) nucleotides [10(-6) to 10(-4) M adenosine-5'-triphosphate (ATP), inosine-5'-monophosphate (IMP), and inosine-5'-triphosphate (ITP)], or 3) amino acids (10(-6) to 10(-4)M L-alanine, L-methionine, L-arginine, and L-glutamate). Excitatory responses to bile salts were observed primarily in a thin, medial strip in both the dorsal (100-450 microm) and ventral (900-1,200 microm) OB.

View Article and Find Full Text PDF

In recent years, it has become clear that neonatal exposure to Ag induces rather than ablates T cell immunity. Moreover, rechallenge with the Ag at adult age can trigger secondary responses that are distinct in the lymph node vs the spleen. The question addressed in this report is whether organ-specific secondary responses occur as a result of the diversity of the T cell repertoire or could they arise with homogeneous TCR-transgenic T cells.

View Article and Find Full Text PDF