Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams.
View Article and Find Full Text PDFThis study elucidates whether information avoidance may help explain demonstrated links between future orientation and health. In an online study, college students reported their self-reported prevention and detection health behaviors and responded to a prevention and detection health message. Path analyses indicated that information avoidance mediated the relationship with the future orientations (optimism and consideration of future consequences), such that, greater and more positive future orientations were associated with less information avoidance, and less information avoidance was associated with greater self-reported health behaviors and positive responses to health information.
View Article and Find Full Text PDFBiodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles.
View Article and Find Full Text PDFGlobally, millions of households rely on onsite wastewater treatment systems (OWTSs), such as septic systems, to safely treat and dispose of wastewater. Conventional subsurface OWTSs are a common and affordable option for many landowners, and effectively remove pathogenic and nutrient pollution from wastewater when properly sited and maintained. However, OWTSs can also be a source of nonpoint pollution in watersheds when they are not functioning properly.
View Article and Find Full Text PDFChildren in everyday environments experience verbs separated by minutes or hours and linked to events that vary in their similarity. Prior studies have shown that seeing similar events can be beneficial for verb learning (e.g.
View Article and Find Full Text PDFObjective: During the COVID-19 pandemic, the U.S. public was encouraged to practice good hand hygiene, such as hand washing or the use of hand sanitizer.
View Article and Find Full Text PDFAntibiotic resistance is a global threat to human health. Many surface water resources are environmental hotspots of antibiotic resistant gene (ARG) transfer, with agricultural runoff and human waste highlighted as common sources of ARGs to aquatic systems. Here we quantified fecal marker genes and ARGs in 992 stream water samples collected seasonally during a 5-year period from 115 sites across the Upper Oconee watershed (Georgia, USA), an area characterized by gradients of agricultural and urban development.
View Article and Find Full Text PDFAnthropogenic climate change threatens the structure and function of ecosystems throughout the globe, but many people are still skeptical of its existence. Traditional "knowledge deficit model" thinking has suggested that providing the public with more facts about climate change will assuage skepticism. However, presenting evidence contrary to prior beliefs can have the opposite effect and result in a strengthening of previously held beliefs, a phenomenon known as biased assimilation or a backfire effect.
View Article and Find Full Text PDFShiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause illnesses in humans ranging from mild to hemorrhagic enteritis with complications of hemolytic uremic syndrome and even death. Cattle are a major reservoir of STEC, which reside in the hindgut and are shed in the feces, a major source of food and water contaminations. Seven serogroups, O26, O45, O103, O111, O121, O145 and O157, called 'top-7', are responsible for the majority of human STEC infections in North America.
View Article and Find Full Text PDFLand use change threatens the ecological integrity of tropical rivers and streams; however, few studies have simultaneously analyzed the taxonomic and functional responses of tropical macroinvertebrates to riparian forest conversion. Here, we used community structure, functional diversity, and stable isotope analyses to assess the impacts of riparian deforestation on macroinvertebrate communities of streams in southern Mexico. Monthly sampling during the dry season was conducted in streams with riparian forest (forest streams), and in streams with pasture dominating the riparian vegetation (pasture streams).
View Article and Find Full Text PDFQuantifying the risk that failing onsite waste treatment systems (OWTS), such as septic systems, present to human health and the environment is a key component in natural resource management. We integrated environmental and socio-demographic data to assess the potential environmental risk and environmental justice concerns related to septic infrastructure. We used this process to develop a framework that can be applied in other jurisdictions.
View Article and Find Full Text PDFIn the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants.
View Article and Find Full Text PDFStudies suggest a link between added copper (Cu) and co-selection of antimicrobial resistance (AMR) in Enterococcus spp., but data are inconsistent. This study aimed to assess the impact of added Cu, alone or with a feed-grade antimicrobial, on growth performance, transferable Cu resistance gene (tcrB) prevalence, abundance of tcrB in fecal community DNA, and AMR in fecal enterococci in weaned piglets.
View Article and Find Full Text PDFExtreme weather events, such as hurricanes, can cause ecological disturbances that alter energy and nutrients across terrestrial-aquatic boundaries. Yet, relatively few studies have considered the impacts of extreme weather events on biogeochemical dynamics in watersheds at larger spatial scales. Here, we assessed the effects of Hurricanes Harvey and Irma on the export of dissolved organic matter (DOM) and nutrients in ten watersheds from five southeastern states of the United States.
View Article and Find Full Text PDFAntibiotics can be administered orally or parenterally in swine production, which may influence antimicrobial resistance (AMR) development in gut bacteria. A total of 40 barrows and 40 gilts were used to determine the effects of tylosin administration route on growth performance and fecal enterococcal AMR. The antibiotic treatments followed Food and Drug Administration label directions and were as follows: (1) no antibiotic (CON), (2) 110 mg tylosin per kg feed for 21 d (IN-FEED), (3) 8.
View Article and Find Full Text PDFMetal accumulation in aquatic food webs is mediated by physiochemical parameters of the environment and organismal traits. Trophic strategies influence an organisms' exposure to metal pollution, but links between trophic ecology and exposure to divalent metals are relatively understudied. While organically bound metals are typically considered unavailable for uptake, organisms directly consuming dissolved organic carbon (DOC) and bacteria-via the microbial loop-must also be consuming organically bound metals.
View Article and Find Full Text PDFIdentifying freshwater systems that are at risk from anthropogenic stressors is a pressing management problem. In particular, the detection of metal pollution is often constrained by data availability and resources. To address this challenge and develop a tool to identify susceptible systems, we tested whether land cover could be predictive of stream sensitivity to metal pollution, as determined by the biotic ligand model (BLM).
View Article and Find Full Text PDFAnimals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2017
The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters.
View Article and Find Full Text PDFAnimals mediate flows of elements and energy in ecosystems through processes such as nutrient sequestration in body tissues, and mineralization through excretion. For taxa with biphasic life cycles, the dramatic shifts in anatomy and physiology that occur during ontogeny are expected to be accompanied by changes in body and excreta stoichiometry, but remain little-explored, especially in vertebrates. Here we tested stoichiometric hypotheses related to the bodies and excreta of the wood frog (Lithobates sylvaticus) across life stages and during larval development.
View Article and Find Full Text PDFAim: The aim of the present study is to further the understanding of who cries in therapy and the relation of technique with crying behaviour in therapy.
Method: Psychological assessment feedback sessions, prior to the initiation of formal therapy for 52 patients beginning psychotherapy at a university-based clinic were coded for discrete crying segments. Data about patient characteristics and the process of the session were collected at the time of the session.
Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes.
View Article and Find Full Text PDFFishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments.
View Article and Find Full Text PDFMany animals in the tropics of Africa, Asia and South America regularly visit so-called salt or mineral licks to consume clay or drink clay-saturated water. Whether this behavior is used to supplement diets with locally limited nutrients or to buffer the effects of toxic secondary plant compounds remains unclear. In the Amazonian rainforest, pregnant and lactating bats are frequently observed and captured at mineral licks.
View Article and Find Full Text PDF