Publications by authors named "Capponi S"

Methane emissions from livestock contribute to global warming. Seaweeds used as food additive offer a promising emission mitigation strategy because seaweeds are enriched in bromoform─a methanogenesis inhibitor. Therefore, understanding bromoform storage and production in seaweeds and particularly in a cell-like environment is crucial.

View Article and Find Full Text PDF

Seaweeds, particularly the red seaweed , produce and sequester bromomethanes, which are known for mitigating methane emissions in ruminants when used as a feed supplement. Bromomethane synthesis requires hydrogen peroxide (H O ). We developed a staining assay utilizing 3,3'-diaminobenzidine (DAB) for identifying H O in three groups of seaweeds (red, brown, and green), including intensely pigmented species.

View Article and Find Full Text PDF

Repurposing an organelle for specialized metabolism provides an avenue for fermentable, unicellular organisms such as Saccharomyces cerevisiae to mimic compartmentalization of metabolic pathways within different plant tissues. Peroxisomes are attractive organelles for repurposing as they are not required for yeast viability when grown on glucose and can efficiently compartmentalize heterologous enzymes to enable physical separation of cytosolic native metabolism and peroxisomal engineered metabolism. However, when not required, peroxisomes are repressed, leading to low functional capacities for heterologous proteins.

View Article and Find Full Text PDF

The fruit fly, , is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results.

View Article and Find Full Text PDF
Article Synopsis
  • - The pediatric Glucocorticoid Toxicity Index (pGTI) is a tool developed to measure the negative effects of glucocorticoids on children's health, specifically in those with pediatric-onset systemic lupus erythematosus (pSLE).
  • - A study of 126 pSLE patients over several years found that many experienced significant toxicity, with the most frequent issues being high blood pressure (47%), mood disturbances (25%), and weight gain (21%).
  • - The findings suggest that younger age, higher BMI, and the use of rituximab when beginning glucocorticoid treatment may increase the risk of cumulative toxicity, highlighting the need for tailored assessments to improve treatment strategies for
View Article and Find Full Text PDF

Measurements of Drosophila fecundity are used in a wide variety of studies, such as investigations of stem cell biology, nutrition, behavior, and toxicology. In addition, because fecundity assays are performed on live flies, they are suitable for longitudinal studies such as investigations of aging or prolonged chemical exposure. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results.

View Article and Find Full Text PDF

During the last decade, artificial intelligence (AI) has increasingly been applied in biophysics and related fields, including cellular engineering and reprogramming, offering novel approaches to understand, manipulate, and control cellular function. The potential of AI lies in its ability to analyze complex datasets and generate predictive models. AI algorithms can process large amounts of data from single-cell genomics and multiomic technologies, allowing researchers to gain mechanistic insights into the control of cell identity and function.

View Article and Find Full Text PDF

A central role of viral capsids is to protect the viral genome from the harsh extracellular environment while facilitating initiation of infection when the virus encounters a target cell. Viruses are thought to have evolved an optimal equilibrium between particle stability and efficiency of cell entry. In this study, we genetically perturb this equilibrium in a non-enveloped virus, enterovirus A71 to determine its structural basis.

View Article and Find Full Text PDF

Cell therapies are powerful technologies in which human cells are reprogrammed for therapeutic applications such as killing cancer cells or replacing defective cells. The technologies underlying cell therapies are increasing in effectiveness and complexity, making rational engineering of cell therapies more difficult. Creating the next generation of cell therapies will require improved experimental approaches and predictive models.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) costimulatory domains derived from native immune receptors steer the phenotypic output of therapeutic T cells. We constructed a library of CARs containing ~2300 synthetic costimulatory domains, built from combinations of 13 signaling motifs. These CARs promoted diverse human T cell fates, which were sensitive to motif combinations and configurations.

View Article and Find Full Text PDF

Epitopes are short amino acid sequences that define the antigen signature to which an antibody or T cell receptor binds. In light of the current pandemic, epitope analysis and prediction are paramount to improving serological testing and developing vaccines. In this paper, known epitope sequences from SARS-CoV, SARS-CoV-2, and other Coronaviridae were leveraged to identify additional antigen regions in 62K SARS-CoV-2 genomes.

View Article and Find Full Text PDF

The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism.

View Article and Find Full Text PDF

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2.

View Article and Find Full Text PDF

X-linked dystonia-parkinsonism (XDP) is a monogenic neurodegenerative disorder of the basal ganglia, which presents as a combination of hyperkinetic movements and parkinsonian features. The underlying genetic mechanism involves the insertion of a SINE-VNTR-Alu retrotransposon within the gene. Interestingly, alterations of have been involved in multiple neurological diseases.

View Article and Find Full Text PDF

We present a novel technique to predict binding affinity trends between two molecules from atomistic molecular dynamics simulations. The technique uses a neural network algorithm applied to a series of images encoding the distance between two molecules in time. We demonstrate that our algorithm is capable of separating with high accuracy non-hydrophobic mutations with low binding affinity from those with high binding affinity.

View Article and Find Full Text PDF

COVID-19's high virus transmission rates have caused a pandemic that is exacerbated by the high rates of asymptomatic and presymptomatic infections. These factors suggest that face masks and social distance could be paramount in containing the pandemic. We examined the efficacy of each measure and the combination of both measures using an agent-based model within a closed space that approximated real-life interactions.

View Article and Find Full Text PDF

Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic.

View Article and Find Full Text PDF

Introduction: E-cigarette or vaping product use associated lung injury (EVALI) has been an important health risk in both children and adults. The pathophysiology of EVALI is not well understood. However, it is speculated that certain substances such as Vitamin E Acetate (VEA), particularly in marijuana containing vape cartridges may result in lung injury and lead to respiratory dysfunction.

View Article and Find Full Text PDF

K potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric Ks is unknown.

View Article and Find Full Text PDF

Enterovirus (EV)-D68 has been associated with epidemics in the United Sates in 2014, 2016 and 2018. This study aims to identify potential viral virulence determinants. We found that neonatal type I interferon receptor knockout mice are susceptible to EV-D68 infection via intraperitoneal inoculation and were able to recapitulate the paralysis process observed in human disease.

View Article and Find Full Text PDF

Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of projected entangled pair states (PEPS). Guided by extensive exact diagonalization and density matrix renormalization group calculations, we construct an optimized symmetric PEPS for a SU(3)_{1} chiral spin liquid on the square lattice. Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.

View Article and Find Full Text PDF

Objective: Distinguishing aortitis-induced aneurysms from noninflammatory aortic aneurysms is difficult and often incidentally diagnosed on histologic examination after surgical repair. This study was undertaken to examine surgically diagnosed aortitis and identify patient characteristics and imaging findings associated with the disease.

Methods: In this case-control study, cases had newly diagnosed, biopsy-proven noninfectious aortitis after open thoracic aortic aneurysm surgical repair.

View Article and Find Full Text PDF
Article Synopsis
  • * The research involved analyzing genetic data and clinical phenotyping to understand the syndrome's symptoms, which include hypotonia, facial dysmorphia, and various neurological and physical issues.
  • * Our findings reveal significant variability in the symptoms associated with TAF1 mutations, indicating challenges in pinpointing the exact effects of specific genetic changes, especially for genes on the X chromosome.
View Article and Find Full Text PDF