Tumor Treating Fields (TTFields) has emerged as a significant adjunctive component in the treatment of high-grade gliomas following the EF-14 trial in 2017. The incorporation of TTFields, alongside cyclic temozolomide therapy, has demonstrated improved patient outcomes when the usage exceeds 18 h per day (75% usage). analysis of the EF-14 trial has demonstrated that therapy usage exceeding 90% is associated with an additional benefit, while rates above 50% have also proven effective in literature.
View Article and Find Full Text PDFIsocitrate dehydrogenase (IDH)-mutant gliomas, comprising both astrocytomas and oligodendrogliomas, represent a distinct group of tumors that pose an interdisciplinary challenge. Addressing the needs of affected patients requires close collaboration among various disciplines, including neuropathology, neuroradiology, neurosurgery, radiation oncology, neurology, medical oncology, and other relevant specialties when necessary. Interdisciplinary tumor boards are central in determining the ideal diagnostic and therapeutic strategies for these patients.
View Article and Find Full Text PDFBackground: Intracerebral schwannomas are rare tumors resembling their peripheral nerve sheath counterparts but localized in the CNS. They are not classified as a separate tumor type in the 2021 WHO classification. This study aimed to compile and characterize these rare neoplasms morphologically and molecularly.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumors of adults. For meningiomas that progress or recur despite surgical resection and radiotherapy, additional treatment options are limited due to lack of proven efficacy. Meningiomas show recurring molecular aberrations, which may serve as predictive markers for systemic pharmacotherapies with targeted drugs or immunotherapy, radiotherapy or radioligand therapy.
View Article and Find Full Text PDFBackground: We have recently constructed a DNA methylation classifier that can discriminate between pancreatic ductal adenocarcinoma (PAAD) liver metastasis and intrahepatic cholangiocarcinoma (iCCA) with high accuracy (PAAD-iCCA-Classifier). PAAD is one of the leading causes of cancer of unknown primary and diagnosis is based on exclusion of other malignancies. Therefore, our focus was to investigate whether the PAAD-iCCA-Classifier can be used to diagnose PAAD metastases from other sites.
View Article and Find Full Text PDFAims: DNA methylation profiling, recently endorsed by the World Health Organisation (WHO) as a pivotal diagnostic tool for brain tumours, most commonly relies on bead arrays. Despite its widespread use, limited data exist on the technical reproducibility and potential cross-institutional differences. The LOGGIC Core BioClinical Data Bank registry conducted a prospective laboratory comparison trial with 12 international laboratories to enhance diagnostic accuracy for paediatric low-grade gliomas, focusing on technical aspects of DNA methylation data generation and profile interpretation under clinical real-time conditions.
View Article and Find Full Text PDFThe standard of care for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a major part of the standard treatment, however, the predictive significance of most of the targets for treatment in systemic cancer are less well established in central nervous system (CNS) tumors . In 2023 the EANO Guideline Committee presented evidence based recommendations for rational testing of molecular targets for targeted treatments.
View Article and Find Full Text PDFBackground: Although cavitating ultrasonic aspirators are commonly used in neurosurgical procedures, the suitability of ultrasonic aspirator-derived tumor material for diagnostic procedures is still controversial. Here, we explore the feasibility of using ultrasonic aspirator-resected tumor tissue to classify otherwise discarded sample material by fast DNA methylation-based analysis using low pass nanopore whole genome sequencing.
Methods: Ultrasonic aspirator-derived specimens from pediatric patients undergoing brain tumor resection were subjected to low-pass nanopore whole genome sequencing.
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors.
View Article and Find Full Text PDFThe combination of DNA methylation analysis with histopathological and genetic features allows for a more accurate risk stratification and classification of meningiomas. Nevertheless, the implications of this classification for patients with grade 2 meningiomas, a particularly heterogeneous tumor entity, are only partially understood. We correlate the outcomes of histopathologically confirmed grade 2 meningioma with an integrated molecular-morphologic risk stratification and determine its clinical implications.
View Article and Find Full Text PDFBackground: Tumor embolism is a very rare primary manifestation of cancers and the diagnosis is challenging, especially if located in the pulmonary arteries, where it can mimic nonmalignant pulmonary embolism. Intimal sarcoma is one of the least commonly reported primary tumors of vessels with only a few cases reported worldwide. A typical location of this malignancy is the pulmonary artery.
View Article and Find Full Text PDFDNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific parallel sequencing can generate methylation and genomic copy number data.
View Article and Find Full Text PDFBackground: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers.
Methods: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function.