Deep convolutional neural networks (DCNNs) are able to partially predict brain activity during object categorization tasks, but factors contributing to this predictive power are not fully understood. Our study aimed to investigate the factors contributing to the predictive power of DCNNs in object categorization tasks. We compared the activity of four DCNN architectures with EEG recordings obtained from 62 human participants during an object categorization task.
View Article and Find Full Text PDFOur knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsynaptic receptors. However, variance analysis is based on binomial statistics, which assumes that synapses are uniform.
View Article and Find Full Text PDFRecurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks, but the computations underlying recurrent processing remain unclear. In this article, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain.
View Article and Find Full Text PDFAstrocytes are critical for healthy brain function. In Alzheimer's disease, astrocytes become reactive, which affects their signaling properties. Here, we measured spontaneous calcium transients ex vivo in hippocampal astrocytes in brain slices containing the dentate gyrus of 6- (6M) and 9-month-old (9M) APPswe/PSEN1dE9 (APP/PS1) mice.
View Article and Find Full Text PDFThe perirhinal (PER) and lateral entorhinal (LEC) cortex function as a gateway for information transmission between (sub)cortical areas and the hippocampus. It is hypothesized that the amygdala, a key structure in emotion processing, can modulate PER-LEC neuronal activity before information enters the hippocampal memory pathway. This study determined the integration of synaptic activity evoked by simultaneous neocortical and amygdala electrical stimulation in PER-LEC deep layer principal neurons and parvalbumin (PV) interneurons in mouse brain slices.
View Article and Find Full Text PDFThe perirhinal (PER) - lateral entorhinal (LEC) network plays a pivotal role in the information transfer between the neocortex and the hippocampus. Anatomical studies have shown that the connectivity is organized bi-directionally: the superficial layers consist of projections running from the neocortex via the PER-LEC network to the hippocampus while the deep layers form the output pathway back to the neocortex. Although these pathways are characterized anatomically, the functional organization of the superficial and deep connections in the PER-LEC network remains to be revealed.
View Article and Find Full Text PDFThe perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC.
View Article and Find Full Text PDFThe perirhinal (PER) and entorhinal cortex (EC) receive input from the agranular insular cortex (AiP) and the subcortical lateral amygdala (LA) and the main output area is the hippocampus. Information transfer through the PER/EC network however, is not always guaranteed. It is hypothesized that this network actively regulates the (sub)cortical activity transfer to the hippocampal network and that the inhibitory system is involved in this function.
View Article and Find Full Text PDFIntroduction: Human hippocampal tissue resected from pharmacoresistant epilepsy patients was investigated to study the effect of the antiepileptic drug CBZ (carbamazepine) and was compared to similar experiments in the hippocampus of control rats.
Methods: The molecular layer of the DG (dentate gyrus) of human epileptic tissue and rat nonepileptic tissue was electrically stimulated and the evoked responses were recorded with voltage-sensitive dye imaging to characterize the spatiotemporal properties.
Results: Bath applied CBZ (100 μmol/L) reduced the amplitude of the evoked responses in the human DG, albeit that no clear use-dependent effects were found at frequencies of 8 or 16 Hz.
Graph theory was used to analyze the anatomical network of the rat hippocampal formation and the parahippocampal region (van Strien et al., Nat Rev Neurosci 10(4):272-282, 2009). For this analysis, the full network was decomposed along the three anatomical axes, resulting in three networks that describe the connectivity within the rostrocaudal, dorsoventral and laminar dimensions.
View Article and Find Full Text PDFPeripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration and results in an earlier recovery of sensory function after sciatic nerve injury compared to WT animals. In this study, we determine whether C6(-/-) rats have an intrinsic trait that affects sciatic nerve regeneration after injury.
View Article and Find Full Text PDFBackground: Peripheral nerve damage induces a sequence of degeneration and regeneration events with a specific time course that leads to (partial) functional recovery. Quantitative electrophysiological analysis of degeneration and recovery over time is essential to understand the process.
New Method: The presented ex vivo neurophysiological method evaluates functional recovery of the propagation of the compound action potential after crush injury of the rat sciatic nerve.
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [(18)F]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling.
View Article and Find Full Text PDFMost deep brain stimulators apply rectangular monophasic voltage pulses. By modifying the stimulus shape, it is possible to optimize stimulus efficacy and find the best compromise between clinical effect, minimal side effects and power consumption of the stimulus generator. In this study, we compared the efficacy of three types of charge-balanced biphasic pulses (CBBPs, nominal duration 100 μs) in isolated sciatic nerves and in in vitro hippocampal brain slices of the rat.
View Article and Find Full Text PDFA connectome is an indispensable tool for brain researchers, since it quickly provides comprehensive knowledge of the brain's anatomical connections. Such knowledge lies at the basis of understanding network functions. Our first comprehensive and interactive account of brain connections comprised the rat hippocampal-parahippocampal network.
View Article and Find Full Text PDFTheta oscillations (4-12 Hz) are associated with learning and memory and are found in the hippocampus and the entorhinal cortex (EC). The spatio-temporal organization of rhythmic activity in the hippocampal-EC complex was investigated in vitro. The voltage sensitive absorption dye NK3630 was used to record the changes in aggregated membrane voltage simultaneously from the neuronal networks involved.
View Article and Find Full Text PDFConverging evidence suggests that each parahippocampal and hippocampal subregion contributes uniquely to the encoding, consolidation and retrieval of declarative memories, but their precise roles remain elusive. Current functional thinking does not fully incorporate the intricately connected networks that link these subregions, owing to their organizational complexity; however, such detailed anatomical knowledge is of pivotal importance for comprehending the unique functional contribution of each subregion. We have therefore developed an interactive diagram with the aim to display all of the currently known anatomical connections of the rat parahippocampal-hippocampal network.
View Article and Find Full Text PDFThe subiculum and the entorhinal cortex (EC) are important structures in processing and transmitting information between the neocortex and the hippocampus. The subiculum potentially receives information from the EC through two routes. In addition to a direct projection from EC to the subiculum, there is an indirect polysynaptic connection.
View Article and Find Full Text PDFThe antitumor agent cisplatin has dose-limiting side effects such as ototoxicity. Systemical co-treatment with anti-oxidants like 4-methylthiobenzoic acid (MTBA) and sodium thiosulfate (STS) provides protection against cisplatin ototoxicity. However, systemically administered protective agents may reduce the chemotherapeutic effect of cisplatin.
View Article and Find Full Text PDFThe effect of noise exposure on the auditory system is well known from animal studies. However, most of the studies concern short-term exposure conditions. The purpose of the present research was to find the dose-effect curve for hearing loss in rats following 5 days of noise exposure.
View Article and Find Full Text PDFThe present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was found in the corresponding cochlear regions.
View Article and Find Full Text PDFThe effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dB(lin) SPL or background noise at 65 dB(lin) SPL) and all their combinations were investigated for a 5 day exposure at 8 h/day. Distortion product otoacoustic emissions and compound action potentials were affected after 105 dB noise alone, and after 105 dB noise in combination with ethyl benzene (300 and 400 ppm).
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
December 2000
Rats were exposed to ethyl benzene at 0, 300, 400 and 550 ppm for 8 hours/day for 5 consecutive days. Three to six weeks after the exposure, auditory function was tested by measuring compound action potentials (CAP) in the frequency range of 1-24 kHz and 2f1-f2 distortion product otoacoustic emissions (DPOAEs) in the frequency range of 4-22.6 kHz.
View Article and Find Full Text PDFExposure to organic solvents has been shown to be ototoxic in animals and there is evidence that these solvents can induce hearing loss in humans. In this study, the effects of inhalation of the possibly ototoxic solvent ethyl benzene on the cochlear function and morphology were evaluated using three complementary techniques: (1) reflex modification audiometry (RMA), (2) electrocochleography and (3) histological examination of the cochleas. Rats were exposed to either ethyl benzene (800 ppm, 8 h/day for 5 days) or to control conditions.
View Article and Find Full Text PDF