Publications by authors named "Capoulat M"

Existing and active low-energy Accelerator-Based BNCT programs worldwide will be reviewed and compared. In particular, the program in Argentina will be discussed which consists of the development of an Electro-Static-Quadrupole (ESQ) Accelerator-Based treatment facility. The facility is conceived to operate with the deuteron-induced reactions Be(d,n)B and C(d,n)N at 1.

View Article and Find Full Text PDF

Purpose: Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is C(d,n)N.

View Article and Find Full Text PDF

Aim: This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT).

Background: There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines.

View Article and Find Full Text PDF

In this work we provide some information on the present status of accelerator-based BNCT (AB-BNCT) worldwide and subsequently concentrate on the recent accelerator technology developments in Argentina.

View Article and Find Full Text PDF

The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed.

View Article and Find Full Text PDF

In the frame of accelerator-based BNCT, the (9)Be(d,n)(10)B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40Gy-Eq, with a maximum value of 51Gy-Eq at a depth of about 2.

View Article and Find Full Text PDF

The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.

View Article and Find Full Text PDF

We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction.

View Article and Find Full Text PDF

In the range of low bombarding energies (less than about 1.5 MeV) the (9)Be(d,n)(10)B reaction produces neutron spectra that can be moderated depending on the choice of the target thickness and the deuteron bombarding energy. In this work, a Monte Carlo simulation study to determine the capability of this reaction to deliver enough dose to efficiently control both skin and deep seated tumors has been performed by means of MCNP calculations using eight optimized (9)Be targets.

View Article and Find Full Text PDF

The nuclide (241)Am decays by alpha emission to (237)Np. Most of the decays (84.6%) populate the excited level of (237)Np with energy of 59.

View Article and Find Full Text PDF

A non-radionuclide-specific computer code to analyze data, calculate detection efficiency and activity in a TDCR system is presented. The program was developed prioritizing flexibility in measuring conditions, parameters and calculation models. It is also intended to be well structured in order to easily replace subroutines which could eventually be improved by the user.

View Article and Find Full Text PDF