Publications by authors named "Capitanio M"

Objectives: To examine whether the effectiveness of current dentin-priming approaches requiring solvated hydrophilic resins may be replicated by modifying the infiltration dynamics of neat methacrylate-based monomers into dry-etched dentin using dimethyl sulfoxide (DMSO) pretreatments.

Methods: HPO-etched mid-coronal dentin surfaces from human molars were air-dried for 30 s and randomly pretreated with 50 %(v/v) ethanolic DMSO for 20 or 60 s. Untreated samples and an isolated wet-bonding group served as controls.

View Article and Find Full Text PDF

Background: Particulate contamination due to infusion therapy (administration of parenteral nutrition and medications) carries a potential health risk for infants in neonatal intensive care units (NICUs). This particulate consists of metals, drug crystals, glass fragments, or cotton fibers and can be generated by drug packaging, incomplete reconstitution, and chemical incompatibilities. In-line filters have been shown to remove micro-organisms, endotoxin, air, and particles in critically ill adults and older infants, but its benefits in newborn remain to be demonstrated.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression.

View Article and Find Full Text PDF

Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria.

View Article and Find Full Text PDF

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane.

View Article and Find Full Text PDF

Introduction: Breastfeeding naturally enables the coordination of sucking, swallowing, and respiration patterns for safe feeding. When breastfeeding is not possible a feeding device that releases milk in response to intra-oral vacuum could potentially offer improved coordination of sucking, swallowing, and breathing patterns compared to conventional devices. The aim of the study is to evaluate the effect of a valved infant-bottle with an ergonomic teat compared to a standard infant-bottle.

View Article and Find Full Text PDF

Introduction: Acute intestinal diseases (AID), including necrotizing enterocolitis and spontaneous intestinal perforation, are a group of conditions that typically present in preterm infants, and are associated with an elevated mortality and morbidity rate. The risk factors for these diseases remain largely unknown. The aim of the study is to identify the correlation between twinning and the development of AID.

View Article and Find Full Text PDF

Due to the still large number of patients diagnosed with pelvic neoplasms (colorectal, gynecological, and urological) in advanced stages right from the initial diagnosis, surgery represents the mainstay of treatment, often implying wide, eventually multi-organ resections in order to achieve negative surgical margins. Perineal wound morbidity, particularly in extralevator abominoperineal excision, leads to complications and local infection rates of up to 40%. Strategies to reduce postoperative wound complications are being pursued to address this issue.

View Article and Find Full Text PDF

In HILO microscopy, a highly inclined and laminated light sheet is used to illuminate the sample, thus drastically reducing background fluorescence in wide-field microscopy, but maintaining the simplicity of the use of a single objective for both illumination and detection. Although the technique has become widely popular, particularly in single molecule and super-resolution microscopy, a limited understanding of how to finely shape the illumination beam and of how this impacts on the image quality complicates the setting of HILO to fit the experimental needs. In this work, we build up a simple and comprehensive guide to optimize the beam shape and alignment in HILO and to predict its performance in conventional fluorescence and super-resolution microscopy.

View Article and Find Full Text PDF

Particle localization plays a fundamental role in advanced biological techniques such as single-molecule tracking, superresolution microscopy, and manipulation by optical and magnetic tweezers. Such techniques require fast and accurate particle localization algorithms as well as nanometer-scale stability of the microscope. Here, we present a universal method for three-dimensional localization of single labeled and unlabeled particles based on local gradient calculation of particle images.

View Article and Find Full Text PDF

The predictions on the influence of the SARS-CoV-2 pandemic on access to medical services in Romania predicted a 35% drop in oncological hospitalizations in 2020 compared to the previous decade, raising the hypothesis that patients with colorectal cancer can become indirect victims of the ongoing pandemic. Therefore, the aim of the current research was to observe how the COVID-19 pandemic influenced colorectal cancer surgery in Romania, to determine the level of addressability towards specialized care, to compare the cancer staging between the pandemic and pre-pandemic periods, and to observe the risk factors for disease progression. This retrospective study was spread over three years, respectively, from March 2019 to March 2022, and included a total of 198 patients with a history of colorectal cancer surgery.

View Article and Find Full Text PDF

Interactions between biological molecules occur on very different time scales, from the minutes of strong protein-protein bonds, down to below the millisecond duration of rapid biomolecular interactions. Conformational changes occurring on sub-ms time scales and their mechanical force dependence underlie the functioning of enzymes (e.g.

View Article and Find Full Text PDF

The Molecular motors or motor proteins are able to generate force and do mechanical work that is used to displace a load or produce relative movements between molecules or macromolecular assembles [...

View Article and Find Full Text PDF

α-catenin is a crucial protein at cell junctions that provides connection between the actin cytoskeleton and the cell membrane. At adherens junctions (AJs), α-catenin forms heterodimers with β-catenin that are believed to resist force on F-actin. Outside AJs, α-catenin forms homodimers that regulates F-actin organization and directly connect the cell membrane to the actin cytoskeleton, but their mechanosensitive properties are inherently unknown.

View Article and Find Full Text PDF

The aim of this study was to compare the effectiveness of a reciprocating file (Reciproc) and a rotary retreatment file (Mtwo retreatment [Mtwo-R]) for the removal of filling material during root canal retreatment. A total of 30 mandibular molars with a mesial root curvature between 20° and 40° were selected and prepared using a Reciproc R25 file. The canals were filled using the lateral condensation technique and a root canal sealer.

View Article and Find Full Text PDF

Background: Esophageal atresia (EA) with or without tracheoesophageal fistula (TEF) represents the most severe entity among the foregut malformations, with patients at risk of chronic morbidity. This study aims to investigate on health-related quality of life (QoL) and long-term results in patients with EA.

Methods: 50 patients (30M, 20F, mean age: 14-year-old), among 82 patients operated from January 1995 to December 2005, answered the questionnaire.

View Article and Find Full Text PDF

Background: MDR in bacteria is threatening to public health. Overexpression of efflux pumps is an important cause of MDR. The co-administration of antimicrobial drugs and efflux pump inhibitors (EPIs) is a promising approach to address the problem of MDR.

View Article and Find Full Text PDF

Ultrafast force-clamp spectroscopy (UFFCS) is a single molecule technique based on laser tweezers that allows the investigation of the chemomechanics of both conventional and unconventional myosins under load with unprecedented time resolution. In particular, the possibility to probe myosin motors under constant force right after the actin-myosin bond formation, together with the high rate of the force feedback (200 kHz), has shown UFFCS to be a valuable tool to study the load dependence of fast dynamics such as the myosin working stroke. Moreover, UFFCS enables the study of how processive and non-processive myosin-actin interactions are influenced by the intensity and direction of the applied force.

View Article and Find Full Text PDF

To investigate the action mechanism of 1-benzyl-1,4-diazepane (1-BD) as efflux pump inhibitor (EPI) in mutants: Δ or overexpressing AcrAB and AcrEF efflux pumps. Effect of 1-BD on: antibiotic potentiation, by microdilution method; membrane functionality, by fluorimetric assays; ethidium bromide accumulation, by fluorometric real-time efflux assay; AcrB expression, by quantitative photoactivated localization microscopy. 1-BD decreases the minimal inhibitory concentration of levofloxacin and other antibiotics and increase ethidium bromide accumulation in overexpressing efflux pumps but not in the Δ strain.

View Article and Find Full Text PDF

The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration.

View Article and Find Full Text PDF

Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (P), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 μs of actin binding by β-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.

View Article and Find Full Text PDF

Myosin is a large family of actin-based molecular motors, which includes efficient intracellular transporters that move cargoes and material essential for cell's life. Here, we describe protocols for labelling single myosin motors with quantum dots, tracking them in an in vitro reconstituted single-molecule motility assay, acquiring image stacks and analyzing them. We describe the required steps to obtain trajectories of single myosin motors from which fundamental biophysical parameters such as the motor velocity, run length and step size can be derived.

View Article and Find Full Text PDF

Ultrafast force-clamp spectroscopy is a single molecule technique based on laser tweezers with sub-millisecond and sub-nanometer resolution. The technique has been successfully applied to investigate the rapid conformational changes that occur when a myosin II motor from skeletal muscle interacts with an actin filament. Here, we share data on the kinetics of such interaction and experimental records collected under different forces [1].

View Article and Find Full Text PDF

Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors fundamental in recycling endosome trafficking and collective actin network dynamics. Through single-molecule motility assays, we recently demonstrated that myosin-5B can proceed in 36-nm steps along actin filaments as single motor. By analyzing trajectories of single myosin-5B along actin filaments we showed that its velocity is dependent on ATP concentration, while its run length is independent on ATP concentration, as a landmark of processivity.

View Article and Find Full Text PDF