Publications by authors named "Capacchione C"

The advancement of stereoregular polymerization techniques for linear 1,3-dienes has enabled the production of polymers with precise stereocontrol, influencing their physical and chemical properties significantly. While 1,3-butadiene and isoprene yield diverse stereoregular polymers, cyclic dienes have received less attention due to catalyst challenges and limited application in the rubber industry. However, the growing interest in bio-based monomers, particularly those derived from terpenes and terpenoids, has revitalized interest in cyclic monomers with conjugated double bonds.

View Article and Find Full Text PDF

A new nanodevice based on gold nanoparticles (AuNPs) capped with poly(diethylvinylphosphonate) (PDEVP) has been synthesized, showing interesting photophysical and thermoresponsive properties. The synthesis involves a properly designed Yttriocene catalyst coordinating the vinyl-lutidine (VL) initiator active in diethyl vinyl phosphonate polymerization. The unsaturated PDEVP chain ending was thioacetylated, deacetylated, and reacted with tetrachloroauric acid and sodium borohydride to form PDEVP-VL-capped AuNPs.

View Article and Find Full Text PDF

The structure-properties relationships of sustainable materials derived from biomass-based monomers are investigated, focusing on hybrid styrene/terpene-based copolymers with blocky microstructures, such as β-myrcene- and β-ocimene-styrene copolymers. The samples show complex glass transition dynamics, as evidenced by the physical aging experienced by the amorphous phase in styrene-rich copolymers. The tendency of styrene- and terpene-rich sequences to give heterogeneous morphologies with correlation strength extending over 10-40 nm is outlined, through small-angle X-ray scattering analysis.

View Article and Find Full Text PDF

The presence in seawater of low-molecular-weight polyethylene (PE) and polydimethylsiloxane (PDMS), synthetic polymers with high chemical resistance, has been demonstrated in this study for the first time by developing a novel methodology for their recovery and quantification from surface seawater. These synthetic polymer debris (SPD) with very low molecular weights and sizes in the nano- and micro-metre range have escaped conventional analytical methods. SPD have been easily recovered from water samples (2 L) through filtration with a nitrocellulose membrane filter with a pore size of 0.

View Article and Find Full Text PDF

In this work, four new mononuclear Cr(III) complexes (2-5) bearing bis-thioether-diphenolate, [OSSO]-type ligands, were synthesized and characterized. These complexes in combination with bis(triphenylphosphine)iminium chloride (PPNCl) promoted the coupling of CO with epoxides. Depending on the type of substrate and the conditions, the reaction results in the selective formation of either polycarbonate or cyclic carbonate.

View Article and Find Full Text PDF

We describe how the organocatalytic, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based lactide ring-opening polymerization can be effectively performed in a very polar solvent, -methylpyrrolidone (NMP).

View Article and Find Full Text PDF

The growing environmental pollution and the expected depleting of fossil resources have sparked interest in recent years for polymers obtained from monomers originating from renewable sources. Furthermore, nature can provide a variety of building blocks with special structural features (e. g.

View Article and Find Full Text PDF

This article is focused on the research and development of new cellulose ether derivatives as innovative superplasticizers for mortar systems. Several synthetic strategies have been pursued to obtain new compounds to study their properties on cementitious systems as new bio-based additives. The new water-soluble admixtures were synthesized using a complex carboxymethylcellulose-based backbone that was first hydrolyzed and then sulfo-ethylated in the presence of sodium vinyl sulphonate.

View Article and Find Full Text PDF

Pseudorotaxane complexes between β-CD and mPEG derivatives bearing a carboxylic acid function (mPEG-COOH) were synthesized and investigated for their dispersing properties in a cement-based mortar. The formation of mPEG-COOH derivatives and their pseudorotaxanes was investigated by 1D nuclear magnetic resonance, diffusion ordered spectroscopy, and thermogravimetric analysis experiments. Mortar tests clearly indicate that mPEG-COOH@β-CD-interpenetrated supramolecules show excellent dispersing abilities.

View Article and Find Full Text PDF

A new class of zirconium and hafnium complexes coordinated by linear dianonic tetradentate NSSN ligands is reported. The ligands feature two amide functions coupled with two thioether groups linked by a central flexible ethane bridge and two lateral rigid phenylene bridges and differ for the substituents on the aniline nitrogen atoms, i.e.

View Article and Find Full Text PDF

Soluble heterocomplexes consisting of sodium hydride in combination with trialkylaluminum derivatives have been used as anionic initiating systems at 100 °C in toluene for convenient homo-, co- and ter-polymerization of myrcene with styrene and isoprene. In this way it has been possible to obtain elastomeric materials in a wide range of compositions with interesting thermal profiles and different polymeric architectures by simply modulating the alimentation feed and the (monomers)/(initiator systems) ratio. Especially, a complete study of the myrcene-styrene copolymers (PMS) was carried out, highlighting their tapered microstructures with high molecular weights (up to 159.

View Article and Find Full Text PDF

Water-soluble tetrasulfonate resorcin[4]arene ( and ) and pyrogallol[4]arene () macrocycles were synthesized and investigated for their dispersing properties in cement-based mortars. Mortar tests clearly show that these polyhydroxylated macrocycles (nonpolymeric) work as cement dispersants. Setting time determinations indicate that the macrocycles and show a retarding effect that is reminiscent of the behavior of superplasticizers (SPs) functionalized with polyhydroxylated β-CDs.

View Article and Find Full Text PDF

Theranostics based on two-photon excitation of therapeutics in the NIR region is an emerging and powerful tool in cancer therapy since this radiation deeply penetrates healthy biological tissues and produces selective cell death. Aggregates of gold nanoparticles coated with glutathione corona functionalized with the dansyl chromophore (a-DG-AuNPs) were synthesized and found efficient nanodevice for applications in photothermal therapy (PTT). Actually the nanoparticle aggregation enhances the quenching of radiative excitation and the consequent conversion into heat.

View Article and Find Full Text PDF

A new chromium(III) complex, bearing a bis-thioether-diphenolate [OSSO]-type ligand, was found to be an efficient catalyst in the copolymerization of CO and epoxides to achieve poly(propylene carbonate), poly(cyclohexene carbonate), poly(hexene carbonate) and poly(styrene carbonate), as well as poly(propylene carbonate)(cyclohexene carbonate) and poly(propylene carbonate)(hexene carbonate) terpolymers.

View Article and Find Full Text PDF

The efficient formation of cyclic polyesters from the ring-opening polymerization of lactide, ϵ-caprolactone, and β-butyrolactone catalyzed by a 1,4-dithiabutanedyl-2,2'-bis(4,6-dicumylphenol) [OSSO]-FeCl complex activated with cyclohexene oxide was achieved. The catalyst was very active (initial turnover frequency up to 2718 h ), robust, and worked with a monomer/Fe ratio up to 10 000. The formation of cyclic polymers was supported by using high-resolution matrix-assisted laser desorption ionization (MALDI) MS, and the average ring size (≈5 kDa for cyclic polylactide) independent of the reaction conditions.

View Article and Find Full Text PDF

The dichloro titanium complexes (OSSO )TiCl () and (OSSO)TiCl () bearing -phenylene-bridged OSSO-type ligands [OSSO -H = 6,6'-((1,2-phenylenebis(sulfanediyl))bis(methylene))bis(2,4-di--butyphenol) and OSSO-H = 6,6'-((1,2-phenylenebis(sulfanediyl))bis(methylene))bis(2,4-bis(2-phenylpropan-2-yl)phenol)] were prepared and characterized. The X-ray structure of revealed that Ti atom has an octahedral coordination geometry with an - wrapping of the [OSSO] ligand. In solution at 25 °C, mainly retains the symmetric structure, whereas shows an equilibrium between - and -symmetric stereoisomers.

View Article and Find Full Text PDF

A Fe -triflate complex, bearing a bis-thioether-di-phenolate [OSSO]-type ligand, was discovered to promote the ring-opening of glycidol with alcohols under mild reaction conditions (0.05 mol % catalyst and 80 °C). The reaction proceeded with high activity (initial turnover frequency of 1680 h for EtOH) and selectivity (>95 %) toward the formation of twelve monoalkyl glyceryl ethers (MAGEs) in a regioselective fashion (84-96 % yield of the non-symmetric regioisomer).

View Article and Find Full Text PDF

The aerobic oxidation and oxidative esterification of 5-hydroxymethylfurfural (HMF) catalyzed by gold nanoparticles (AuNPs) supported on a semicrystalline nanoporous multiblock copolymer matrix consisting of syndiotactic poly(styrene)-cis-1,4-poly(butadiene) (sPSB) have been investigated. Depending on the reaction parameters (support nanoporosity, presence of water, solvent, temperature, cocatalyst, oxygen pressure), the conversion of HMF can be finely addressed to the formation of the desired oxidation product, such as 2,5-diformylfuran (DFF), 5-formylfuran-2-carboxylic acid (FFCA), methyl 5-(hydroxymethyl)furan-2-carboxylate (MHMFC), dimethyl furan-2,5-dicarboxylate (DMFC), and furan-2,5-dicarboxylic acid (FDCA), under optimized reaction conditions. The AuNP-sPSB catalyst is highly effective and selective because the polymer support acts as a conveyor and concentrator of the reactants toward the catalytic sites.

View Article and Find Full Text PDF

The selective preparation of monoalkylglyceryl ethers (MAGEs) is a task for researchers owing to their broad range of applications. In this work, green feedstocks such as glycidol and alcohols were used to prepare MAGEs under mild reaction conditions (80 °C, 3 h, 0.5 mol % catalyst) in the presence of acid heterogeneous catalysts.

View Article and Find Full Text PDF

The disposal of any waste by recovering it within the production plant represents the ultimate goal of every biorefinery. In this scenario, the selective preparation of monoalkyl glyceryl ethers (MAGEs) starting from glycidol, obtained as byproduct in the epichlorohydrin production plant, represents a very promising strategy. Here, we report the synthesis of MAGEs through the reaction of glycidol with alcohols catalyzed by a green homogeneous Lewis acids catalyst, such as Bi triflate, under very mild reaction conditions.

View Article and Find Full Text PDF

Over the last few decades the development of new technologies, the fabrication of new materials, and the introduction of nanotechnologies created new trends in a series of advances that produced innovations in biological sensing devices with a wide range of application from health, security, defense, food, and medicine, to the environment. Specificity, low cost, rapidity, sensitivity, and multiplicity are some of the reasons for their growth, and their commercial success is expected to increase in the next future. Biosensors are devices in which the recognition part of the target molecule is accomplished by biological macromolecules such as proteins, enzymes, antibodies, aptamers, etc.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on synthesizing and characterizing group 4 metal complexes using a particular type of ligand, with specific formulas and metal combinations detailed for Zr, Ti, and Hf.
  • - The complexes were created via σ-bond metathesis reactions, and their structures were analyzed through NMR spectroscopy and X-ray diffraction; while zirconium and hafnium complexes were stable, the titanium complex exhibited fluxional behavior in solution.
  • - The metal complexes were tested for their effectiveness in ring-opening polymerization of racemic-lactide, showing moderate rates and good control, with results indicating the operation of an activated monomer mechanism during the polymerization process.
View Article and Find Full Text PDF

The present work deals with the production of monoalkyl glyceryl ethers (MAGEs) through a new reaction pathway based on the reaction of glycidol and alcohols catalyzed by Lewis acid-based catalysts. Glycidol is quantitatively converted with high selectivity (99 %) into MAGEs under very mild reaction conditions (80 °C and 0.01 mol % catalyst loading) in only 1 h using Al(OTf) or Bi(OTf) as catalyst.

View Article and Find Full Text PDF

Glycidol is converted into glycerol carbonate (GC) by coupling with CO in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2 =1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC.

View Article and Find Full Text PDF