Publications by authors named "Canzoneri J"

Oxidative damage is believed to play a major role in the etiology of many age-related diseases and the normal aging process. We previously reported that sulindac, a cyclooxygenase (COX) inhibitor and FDA approved anti-inflammatory drug, has chemoprotective activity in cells and intact organs by initiating a pharmacological preconditioning response, similar to ischemic preconditioning (IPC). The mechanism is independent of its COX inhibitory activity as suggested by studies on the protection of the heart against oxidative damage from ischemia/reperfusion and retinal pigmented endothelial (RPE) cells against chemical oxidative and UV damage Unfortunately, sulindac is not recommended for long-term use due to toxicities resulting from its COX inhibitory activity.

View Article and Find Full Text PDF

Phosphodiesterase 10A (PDE10) is a cyclic nucleotide (e.g. cGMP) degrading enzyme highly expressed in the brain striatum where it plays an important role in dopaminergic neurotransmission, but has limited expression and no known physiological function outside the central nervous system.

View Article and Find Full Text PDF

A series of novel pyridazin-6-one-1-acetylhydrazone hybrids were rationally designed to inhibit phosphodiesterase 4 (PDE4B). The prepared compounds were evaluated for their in vitro ability to inhibit the PDE4B enzyme; several of these compounds showed moderate activity compared to the reference drug, rolipram. Compounds 6, 12, and 14 emerged as the most potent inhibitors in this series.

View Article and Find Full Text PDF

In view of the emerging clinical indications for Phosphodiesterase 9 inhibitors e.g. treatment of Alzheimer, diabetes, cancer, and the limited number of its selective inhibitors which possess a single chemical scaffolds, a structure-based approach was undertaken to mine the ZINC database by virtual screening to identify novel PDE9 inhibitors.

View Article and Find Full Text PDF

Tadalafil is a clinically approved phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. It contains two chiral carbons, and the marketed isomer is the , isomer with a methyl substituent on the terminal nitrogen of the piperazinedione ring. In this report, tadalafil analogues with an extended hydrophilic side chain on the piperazine nitrogen were designed to interact with particular hydrophilic residues in the binding pocket.

View Article and Find Full Text PDF

Previous studies suggest the anti-inflammatory drug, sulindac inhibits tumorigenesis by a COX independent mechanism involving cGMP PDE inhibition. Here we report that the cGMP PDE isozymes, PDE5 and 10, are elevated in colon tumor cells compared with normal colonocytes, and that inhibitors and siRNAs can selectively suppress colon tumor cell growth. Combined treatment with inhibitors or dual knockdown suppresses tumor cell growth to a greater extent than inhibition from either isozyme alone.

View Article and Find Full Text PDF

Despite decades of research on the bacterial ribosome, the ribosomal exit tunnel is still poorly understood. Although it has been suggested that the exit tunnel is simply a convenient route of egress for the nascent chain, specific protein sequences serve to slow the rate of translation, suggesting some degree of interaction between the nascent peptide chain and the exit tunnel. To understand how the ribosome interacts with nascent peptide sequences, we synthesized and characterized a novel class of probe molecules.

View Article and Find Full Text PDF

A novel series of quinazolin-4(3H)-one/Schiff base hybrids was rationally designed and synthesized. The prepared compounds were evaluated for in vitro activity to inhibit phosphodiesterase 4 (PDE4), where several of them showed good-to-moderate activity compared to rolipram. Compound 7 showed potent PDE4 inhibition in this series, with an IC50 of 1.

View Article and Find Full Text PDF

The cyclic nucleotide phosphodiesterase 10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from Apc(Min/+) mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 were evident by the ability of small-molecule inhibitors and small interfering RNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes.

View Article and Find Full Text PDF

Two series of 2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-4-phenyl-1,6-dihydropyrimidine-5-carbonitriles 5a-h and 4-(4-chlorophenyl)-2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-1-methyl-6-oxo-1,6-dihydropyrimidine-5-carbonitriles 6a-h were synthesized via a cyclocondensation reaction of the corresponding 2-hydrazinopyrimidines 3a,b with the appropriate 2-propen-1-ones 4a-h. The target compounds were screened for their antiproliferative activity against A 549 (lung), HT 29 (colon), MCF 7 and MDA-MB 231 (breast) cell lines. The two most susceptible cell lines were the colon (HT 29) and breast (MDA-MB 231).

View Article and Find Full Text PDF

Current chemotherapy regimens are comprised mostly of single-target drugs which are often plagued by toxic side effects and resistance development. A pharmacological strategy for circumventing these drawbacks could involve designing multivalent ligands that can modulate multiple targets while avoiding the toxicity of a single-targeted agent. Two attractive targets, histone deacetylase (HDAC) and topoisomerase I (Topo I), are cellular modulators that can broadly arrest cancer proliferation through a range of downstream effects.

View Article and Find Full Text PDF

The removal of intervening sequences (introns) from a primary RNA transcript is catalyzed by the spliceosome, a large ribonucleoprotein complex. At the start of each splicing cycle, the spliceosome assembles anew in a sequentially ordered manner on the pre-mRNA intron to be removed. We describe here the identification of a series of naphthalen-2-yl hydroxamate compounds that inhibit pre-mRNA splicing in vitro with mid- to high-micromolar values of IC(50).

View Article and Find Full Text PDF

Strategies to ameliorate the flaws of current chemotherapeutic agents, while maintaining potent anticancer activity, are of particular interest. Agents which can modulate multiple targets may have superior utility and fewer side effects than current single-target drugs. To explore the prospect in cancer therapy of a bivalent agent that combines two complementary chemo-active groups within a single molecular architecture, we have synthesized dual-acting histone deacetylase and topoisomerase II inhibitors.

View Article and Find Full Text PDF

We describe herein the synthesis and characterization of a new class of histone deacetylase (HDAC) inhibitors derived from conjugation of a suberoylanilide hydroxamic acid-like aliphatic-hydroxamate pharmacophore to a nuclear localization signal peptide. We found that these conjugates inhibited the histone deacetylase activities of HDACs 1, 2, 6, and 8 in a manner similar to suberoylanilide hydroxamic acid (SAHA). Notably, compound 7b showed a threefold improvement in HDAC 1/2 inhibition, a threefold increase in HDAC 6 selectivity and a twofold increase in HDAC 8 selectivity when compared to SAHA.

View Article and Find Full Text PDF

Double-stranded sections of mRNA are often inviting sites of interaction for a wide variety of proteins and small molecules. Interactions at these sites can serve to regulate, or disrupt, the homeostasis of the encoded protein products. Such ligand target sites exist as hairpin-loop structures in the mRNAs of several of the proteins involved in iron homeostasis, including ferritin heavy and light chains, and are known as iron responsive elements (IREs).

View Article and Find Full Text PDF

A compact, lightweight, battery-powered respiratory has been developed that fits under a wheelchair lapboard. The device eliminates the need for a mouthpiece, tracheal tube or similar interface. Its operation is based on pressurizing the viscera to compress the lungs and force exhalation.

View Article and Find Full Text PDF