Publications by authors named "Canyang Niu"

Article Synopsis
  • - Histamine plays a key role in various bodily functions like allergic reactions, wakefulness, and gastric acid secretion, and it works through four different histamine receptors.
  • - The study analyzes 9 cryo-electron microscopy structures of these receptors bound to different G protein types and agonists, revealing important details about how histamine binds and the nuanced differences in receptor interactions.
  • - Findings include specific motifs for ligand recognition and key residues for selectivity, providing a framework for designing targeted drugs that can effectively interact with these histamine receptors.
View Article and Find Full Text PDF

The temperature-sensitive Ca-permeable TRPV3 ion channel is robustly expressed in the skin keratinocytes, and its gain-of-function mutations are involved in the pathology of skin lesions. Here, we report the identification of an antispasmodic agent flopropione that alleviates skin inflammation by selective inhibition of TRPV3. In whole-cell patch clamp recordings, flopropione selectively inhibits macroscopic TRPV3 currents in a concentration-dependent manner with an IC value of 17.

View Article and Find Full Text PDF

Heteromeric assembly of temperature-sensitive transient receptor potential (TRP) ion channels has been suggested to underlie the molecular basis of fine-tuning of temperature detection and chemical sensation. However, whether warm temperature-sensitive TRP vanilloid (TRPV) 3 and TRPV4 channels robustly expressed in the skin can form heteromeric assembly remains largely unknown. In this study, we show that TRPV3 and TRPV4 channels can coassemble into functional heterotetrameric channels with distinct properties.

View Article and Find Full Text PDF

Genetic gain-of-function mutations of warm temperature-sensitive transient receptor potential vanilloid 3 (TRPV3) channel cause Olmsted syndrome characterized by severe itching and keratoderma, indicating that pharmacological inhibition of TRPV3 may hold promise for therapy of chronic pruritus and skin diseases. However, currently available TRPV3 tool inhibitors are either nonselective or less potent, thus impeding the validation of TRPV3 as therapeutic target. Using whole-cell patch-clamp and single-channel recordings, we report the identification of two natural dicaffeoylquinic acid isomers isochlorogenic acid A (IAA) and isochlorogenic acid B (IAB) that selectively inhibit TRPV3 currents with IC values of 2.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 3 (TRPV3), robustly expressed in the skin, is a nonselective calcium-permeable cation channel activated by warm temperature, voltage, and certain chemicals. Natural monoterpenoid carvacrol from plant oregano is a known skin sensitizer or allergen that specifically activates TRPV3 channel. However, how carvacrol activates TRPV3 mechanistically remains to be understood.

View Article and Find Full Text PDF

2, 4-dinitrofluorobenzene (DNFB) and 2, 4-dinitrochlorobenzene (DNCB) are well known as skin sensitizers that can cause dermatitis. DNFB has shown to more potently sensitize skin; however, how DNFB and DNCB cause skin inflammation at a molecular level and why this difference in their sensitization ability is observed remain unknown. In this study, we aimed to identify the molecular targets and mechanisms on which DNFB and DNCB act.

View Article and Find Full Text PDF