Introduction: Lung transplant (LT) is the ultimate option for end-stage lung diseases. Malnutrition and sarcopenia, common in LT recipients, can be reversible with adequate exercise and nutrition. This study aims to assess changes in physical performance and aerobic capacity after a 10-week rehabilitation program (RP) in LT recipients, as well as to describe the prevalence of sarcopenia and malnutrition before and after RP and their influence on clinically relevant outcomes.
View Article and Find Full Text PDFFeRh alloys in the CsCl-type (B2) chemically ordered phase present an antiferromagnetic to ferromagnetic order transition around 370 K observed in bulk and continuous films but absent in nanoclusters. In this study, we investigate the thermal magnetic behavior of a thick film composed of assembled FeRh nanoclusters preformed in the gas phase. This work reveals a broad and asymmetric metamagnetic transition with a consequent residual magnetization at low temperature.
View Article and Find Full Text PDFWe present a general and in-depth study of the effect of dopants in hybrid inorganic/organic ZnO/PAA (polyacrylic acid) nanocomposites. These dopants vary as much by their ionic size, as by their electronic valence and some of them have been used in ZnO due to their known magnetic and/or optical properties. The chemical nature of the dopants controls their ability to incorporate into ZnO crystal lattice.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2019
Using time-resolved ultrafast pump-probe spectroscopy we investigated the electron-lattice energy transfer in small copper nanospheres with diameters ranging from 3.2 to 23 nm, either embedded in a glass or dispersed in a solvent. Electron-lattice scattering rate is shown to increase with size reduction, in agreement with our previous results obtained on gold and silver nanoparticles in the low excitation regime.
View Article and Find Full Text PDFDegenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2015
In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures.
View Article and Find Full Text PDFWe investigate the luminescence properties of 10 nm yttrium aluminum garnet (YAG) nanoparticles doped with Ce ions at 0.2%, 4% and 13% that are designed as active probes for scanning near-field optical microscopy. They are produced by a physical method without any subsequent treatment, which is imposed by the desired application.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2011
The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate.
View Article and Find Full Text PDFThe control of surface wetting properties to produce robust and strong hydrophobic and oleophobic effects on intrinsically oleophilic surfaces is at the heart of many technological applications. In this paper, we explore the conditions to observe such effects when the roughness of the substrate is of fractal nature and consists of nanofeatures obtained by the ion track etching technique. The wetting properties were investigated using eight different liquids with surface tensions gamma varying from 18 to 72 mN m(-1).
View Article and Find Full Text PDFThe morphology and the electronic structure of a single focused ion-beam-induced artificial extended defect is probed by several methods including micro-Raman spectroscopy, atomic force and scanning tunneling microscopies and Monte Carlo and/or semi-analytical simulation within standard codes. The efficiency of the artificial defect for deposited metallic cluster pinning is also investigated. We show a correlation between the ion dose, morphology, electronic structure and cluster trapping efficiency.
View Article and Find Full Text PDF