Methods Mol Biol
September 2024
Retinal pigment epithelium (RPE) cells derived from induced pluripotent stem cells (iPSCs) serve multiple roles, including among others, modeling RPE development in normal and pathological conditions, investigating mechanisms of RPE physiology, modeling retinal diseases involving the RPE, and developing strategies for regenerative therapies. We have developed a simple and efficient protocol to generate RPE tissue from human iPSCs-derived retinal organoids. The RPE tissue present in the retinal organoids is analogous to the native human RPE in differentiation timeline, histological organization, and key features of functional maturation.
View Article and Find Full Text PDFUsher syndrome type 1B (USH1B) is a deaf-blindness disorder, caused by mutations in the MYO7A gene, which encodes the heavy chain of an unconventional actin-based motor protein. Here, we examined the two retinal isoforms of MYO7A, IF1 and IF2. We compared 3D models of the two isoforms and noted that the 38-amino acid region that is present in IF1 but absent from IF2 affects the C lobe of the FERM1 domain and the opening of a cleft in this potentially important protein binding domain.
View Article and Find Full Text PDFMany patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease.
View Article and Find Full Text PDFTight glycemic control (TGC), the cornerstone of diabetic management, reduces the incidence and progression of diabetic microvascular disease. However, TGC can also lead to transient episodes of hypoglycemia, which have been associated with adverse outcomes in patients with diabetes. Here, we demonstrate that low glucose levels result in hypoxia-inducible factor (HIF)-1-dependent expression of the glucose transporter, Glut1, in retinal cells.
View Article and Find Full Text PDFAcross neurodegenerative diseases, common mechanisms may reveal novel therapeutic targets based on neuronal protection, repair, or regeneration, independent of etiology or site of disease pathology. To address these mechanisms and discuss emerging treatments, in April, 2021, Glaucoma Research Foundation, BrightFocus Foundation, and the Melza M. and Frank Theodore Barr Foundation collaborated to bring together key opinion leaders and experts in the field of neurodegenerative disease for a virtual meeting titled "Solving Neurodegeneration".
View Article and Find Full Text PDFInherited retinal disorders and dry age-related macular degeneration are characterized by the degeneration and death of different types of photoreceptors at different rate and locations. Advancement of new therapeutic interventions such as optogenetics gene therapy and cell replacement therapies are dependent on electrophysiological measurements at cellular resolution. Here, we report the development of an optical coherence tomography (OCT) guided micro-focal multi-color laser stimulation and electroretinogram (ERG) platform for highly localized monitoring of retina function.
View Article and Find Full Text PDFTransplantation of stem cell-derived retinal pigment epithelium (RPE) cells is a promising potential therapy for currently incurable retinal degenerative diseases like advanced dry age-related macular degeneration. In this study, we designed a set of clinically applicable devices for subretinal implantation of RPE grafts, towards the overarching goal of establishing enabling technologies for cell-based therapeutic approaches to regenerate RPE cells. This RPE transplant kit includes a custom-designed trephine for the production of RPE transplants, a carrier for storage and transportation, and a surgical device for subretinal delivery of RPE transplants.
View Article and Find Full Text PDFFor patients with proliferative diabetic retinopathy (PDR) who do not respond adequately to pan-retinal laser photocoagulation (PRP) or anti-vascular endothelial growth factor (VEGF) therapies, we hypothesized that vascular cells within neovascular tissue secrete autocrine/paracrine angiogenic factors that promote disease progression. To identify these factors, we performed multiplex ELISA angiogenesis arrays on aqueous fluid from PDR patients who responded inadequately to anti-VEGF therapy and/or PRP and identified plasminogen activator inhibitor-1 (PAI-1). PAI-1 expression was increased in vitreous biopsies and neovascular tissue from PDR eyes, limited to retinal vascular cells, regulated by the transcription factor hypoxia-inducible factor (HIF)-2α, and necessary and sufficient to stimulate angiogenesis.
View Article and Find Full Text PDFInt J Ophthalmol
January 2022
Dry age-related macular degeneration (AMD) is a progressive blinding disease that currently affects millions of people worldwide with no successful treatment available. Significant research efforts are currently underway to develop therapies aimed at slowing the progression of this disease or, more notably, reversing it. Here the therapies which have reached clinical trial for treatment of dry AMD were reviewed.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown.
View Article and Find Full Text PDFThe mechanisms underlying retinal development have not been completely elucidated. Extracellular vesicles (EVs) are novel essential mediators of cell-to-cell communication with emerging roles in developmental processes. Nevertheless, the identification of EVs in human retinal tissue, characterization of their cargo, and analysis of their potential role in retina development has not been accomplished.
View Article and Find Full Text PDFTherapies targeting VEGF have proven only modestly effective for the treatment of proliferative sickle cell retinopathy (PSR), the leading cause of blindness in patients with sickle cell disease. Here, we shift our attention upstream from the genes that promote retinal neovascularization (NV) to the transcription factors that regulate their expression. We demonstrated increased expression of HIF-1α and HIF-2α in the ischemic inner retina of PSR eyes.
View Article and Find Full Text PDFReplacement of dysfunctional retinal pigmented epithelium (RPE) with grafts derived from stem cells has the potential to improve vision for patients with retinal disorders. In fact, the potential is such that a great number of groups are attempting to realize this therapy through individual strategies with a variety of stem cell products, hosts, immunomodulatory regimen, and techniques to assess the success of their design. Comparing the findings of different investigators is complicated by a number of factors.
View Article and Find Full Text PDFStem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFWe have identified a discrete, focal telomere DNA expansion phenotype in the photoreceptor cell layer of normal, non-neoplastic human retinas. This phenotype is similar to that observed in a subset of human cancers, including a large fraction of tumors of the central nervous system, which maintain their telomeres via the non-telomerase-mediated alternative lengthening of telomeres (ALT) mechanism. We observed that these large, ultra-bright telomere DNA foci are restricted to the rod photoreceptors and are not observed in other cell types.
View Article and Find Full Text PDFA range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs).
View Article and Find Full Text PDFThe advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a three-dimensional (3D) human tissue context that resembles the native histoarchitecture and to some extent recapitulates cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids on a large scale pose severe limitations for their use in translational applications.
View Article and Find Full Text PDFThe derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i).
View Article and Find Full Text PDFThe cone photoreceptor-enriched cultures derived from embryonic chick retinas have become an indispensable tool for researchers around the world studying the biology of retinal neurons, particularly photoreceptors. The applications of this system go beyond basic research, as they can easily be adapted to high throughput technologies for drug development. However, genetic manipulation of retinal photoreceptors in these cultures has proven to be very challenging, posing an important limitation to the usefulness of the system.
View Article and Find Full Text PDFMany forms of blindness result from the dysfunction or loss of retinal photoreceptors. Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these diseases or as potential therapeutic agents. However, to fulfill this promise, a remaining challenge is to induce human iPSC to recreate in vitro key structural and functional features of the native retina, in particular the presence of photoreceptors with outer-segment discs and light sensitivity.
View Article and Find Full Text PDF