The m.3243A>G mutation within the mitochondrial mt-tRNALeu gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification.
View Article and Find Full Text PDFChemotherapy can cause cachexia, which consists of weight loss associated with muscle atrophy. The exact mechanisms underlying this skeletal muscle toxicity are largely unknown and co-therapies to attenuate chemotherapy-induced side effects are lacking. By using a rat model of cisplatin-induced cachexia, we here characterized the mitochondrial homeostasis in tibialis anterior cachectic muscle and evaluated the potential beneficial effects of the growth hormone secretagogues (GHS) hexarelin and JMV2894 in this setting.
View Article and Find Full Text PDFWe previously reported the ability of dietary supplementation with acetyl-l-carnitine (ALCAR) to prevent age-related decreases of mitochondrial biogenesis in skeletal muscle and liver of old rats. Here, we investigate the effects of ALCAR supplementation in cerebral hemispheres and cerebellum of old rats by analyzing several parameters linked to mitochondrial biogenesis, mitochondrial dynamics and antioxidant defenses. We measured the level of the coactivators PGC-1α and PGC-1β and of the factors regulating mitochondrial biogenesis, finding an age-related decrease of PGC-1β, whereas PGC-1α level was unvaried.
View Article and Find Full Text PDFMitochondrial transcription factor A (TFAM) is a key component for the protection and transcription of the mitochondrial genome. TFAM belongs to the high mobility group (HMG) box family of DNA binding proteins that are able to bind to and bend DNA. Human TFAM (huTFAM) contains two HMG box domains separated by a linker region, and a 26 amino acid C-terminal tail distal to the second HMG box.
View Article and Find Full Text PDFLeber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance.
View Article and Find Full Text PDFGST fusion proteins expressed in bacteria often tend to form aggregates and are inefficiently purified by standard procedures, which employ a mixture of detergents that compromise the binding efficiency to the affinity resin and the biological activity of the recombinant proteins. Moreover, the binding to the resin is negatively affected by the molecular weight of the fusion protein. Here we report a simple and efficient method to purify active large GST-tagged proteins, which uses high ionic strength buffer to solubilize the protein aggregates in a bacterial lysate.
View Article and Find Full Text PDFLeber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy.
View Article and Find Full Text PDFSea urchin mtDNA is transcribed via a different mechanism compared to vertebrates. To gain information on the apparatus of sea urchin mitochondrial transcription we have characterized the DNA binding properties of the mitochondrial transcription factor A (TFAM). The protein contains two HMG box domains but, differently from vertebrates, displays a very short C-terminal tail.
View Article and Find Full Text PDFDREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions.
View Article and Find Full Text PDFAging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.
View Article and Find Full Text PDFThe MTERF protein family comprises members from Metazoans and plants. All the Metazoan MTERF proteins characterized to date, including the mitochondrial transcription termination factors, play a key role in mitochondrial gene expression. In this study we report the characterization of Drosophila MTERF5 (D-MTERF5), a mitochondrial protein existing only in insects, probably originated from a duplication event of the transcription termination factor DmTTF.
View Article and Find Full Text PDFBackground: An increase in mitochondrial DNA (mtDNA) content and mitochondrial biogenesis associated with the activation of PGC-1α signalling pathway was previously reported in type I endometrial cancer. The aim of this study has been to evaluate if mtDNA content and the citrate synthase (CS) activity, an enzyme marker of mitochondrial mass, increase in progression from control endometrium to hyperplasia to type I endometrial carcinoma.
Results: Given that no statistically significant change in mtDNA content and CS activity in endometrium taken from different phases of the menstrual cycle or in menopause was found, these samples were used as control.
The behavior of the peroxisome proliferator-activated receptor-γ coactivators PGC-1α/PGC-β-dependent mitochondrial biogenesis signaling pathway, as well as the level of some antioxidant enzymes and proteins involved in mitochondrial dynamics in the liver of old rats before and after 2 months of acetyl-L-carnitine (ALCAR) supplementation, was tested. The results reveal that ALCAR treatment is able to reverse the age-associated decline of PGC-1α, PGC-1β, nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (TFAM), nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 (ND1), and cytochrome c oxidase subunit IV (COX IV) protein levels, of mitochondrial DNA (mtDNA) content, and of citrate synthase activity. Moreover, it partially reverses the mitochondrial superoxide dismutase 2 (SOD2) decline and reduces the cellular content of oxidized peroxiredoxins.
View Article and Find Full Text PDFThe glutathione S-transferase (GST) fusion protein system is widely used for high-level expression and efficient purification of recombinant proteins from bacteria. However many GST-tagged proteins are insoluble, and the existing procedures, which employ a mixture of detergents to solubilize the molecules, frequently compromise their functional activity. A further limitation is that large proteins (>80 kDa) are poorly isolated by the current methods and are contaminated by truncated forms.
View Article and Find Full Text PDFOxidative stress has a central role in aging and in several age-linked diseases such as neurodegenerative diseases, diabetes and cancer. Mitochondria, as the main cellular source and target of reactive oxygen species (ROS) in aging, are recognized as very important players in the above reported diseases. Impaired mitochondrial oxidative phosphorylation has been reported in several aging tissues.
View Article and Find Full Text PDFThe MTERF family is a large protein family, identified in metazoans and plants, which consists of four subfamilies, MTERF1, 2, 3 and 4. Mitochondrial localisation was predicted for the vast majority of MTERF family members and demonstrated for the characterised MTERF proteins. The main structural feature of MTERF proteins is the presence of a modular architecture, based on repetitions of a 30-residue module, the mTERF motif, containing leucine zipper-like heptads.
View Article and Find Full Text PDFThe age-related decay of mitochondrial function is a major contributor to the aging process. We tested the effects of 2-month-daily acetyl-L-carnitine (ALCAR) supplementation on mitochondrial biogenesis in the soleus muscle of aged rats. This muscle is heavily dependent on oxidative metabolism.
View Article and Find Full Text PDFThe effect of acetyl-L-carnitine (ALCAR) supplementation to 3-month-old rats in normal-loading and unloading conditions has been here investigated by a combined morphological, biochemical and transcriptional approach to test whether ALCAR might cause a remodeling of the metabolic/contractile phenotype of soleus muscle. Morphological assessment demonstrated an increase of type I oxidative fiber content and cross-sectional area in ALCAR-treated animals both in normal-loading and in unloading conditions. ALCAR prevented loss of mitochondrial mass in unloaded animals whereas no ALCAR-dependent increase of mitochondrial mass occurred in normal-loaded muscle.
View Article and Find Full Text PDFIn mammals, NRF-2 (nuclear respiratory factor 2), also named GA-binding protein, is an Ets family transcription factor that controls many genes involved in cell cycle progression and protein synthesis as well as in mitochondrial biogenesis. In this paper, we analyzed the role of NRF-2 in the regulation of human genes involved in mitochondrial DNA transcription and replication. By a combination of bioinformatic and biochemical approaches, we found that the factor binds in vitro and in vivo to the proximal promoter region of the genes coding for the transcription termination factor mTERF, the RNA polymerase POLRMT, the B subunit of the DNA polymerase-gamma, the DNA helicase TWINKLE, and the single-stranded DNA-binding protein mtSSB.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2009
PGC-1alpha-dependent pathway of mitochondrial biogenesis was investigated for the first time in type I endometrial cancer and in normal endometrium. In cancer endometrial tissue the citrate synthase activity, the mitochondrial DNA content and the TFAM level were found doubled compared to control endometrial tissue. Moreover, a 1.
View Article and Find Full Text PDFCharacterization of the basic transcription machinery of mammalian mitochondrial DNA has been greatly supported by the availability of pure recombinant mitochondrial RNA polymerase (mtRNAP) and accessory factors, which allowed to develop a reconstituted in vitro transcription system. This chapter outlines a general strategy that makes use of a minimal promoter-independent transcription assay to study mitochondrial transcription termination in animal systems. We used such a system to investigate the transcription termination properties of the sea urchin factor mtDBP, however, it is applicable to the study of transcription termination in a variety of organisms, provided that the pure mtRNAP and the transcription termination factor are available.
View Article and Find Full Text PDFThe MTERF family is a wide protein family, identified in Metazoa and plants, which consists of 4 subfamilies named MTERF1-4. Proteins belonging to this family are localized in mitochondria and show a modular architecture based on repetitions of a 30 amino acid module, the mTERF motif, containing leucine zipper-like heptads. The MTERF family includes the characterized transcription termination factors human mTERF, sea urchin mtDBP and Drosophila DmTTF.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) sequence variation in the segment of the D-loop region encompassing the initiation sites for replication and transcription was analyzed in the blood of 277 Italian type 2 diabetes patients and 277 Italian healthy subjects. Compared with the Cambridge Reference Sequence, diabetic patients show a slightly higher propensity to accumulate base changes in this region, with respect to controls, although no significant association can be established between any of the detected changes and the diabetic condition. Subjects, patients and controls, harbouring base changes at the replication origins (positions 57 and 151) and at position 58 were analyzed for mtDNA content.
View Article and Find Full Text PDFOveroxidation and subsequent inactivation of Peroxiredoxin III (PrxIII), a mitochondrial H(2)O(2) scavenging enzyme, have been reported in oxidative stress conditions. No data are available in the literature about the presence of overoxidized forms of PrxIII in aged tissues. Liver mitochondria from 12-month-old rats and 28-month-old rats were here analyzed by two-dimensional gel electrophoresis.
View Article and Find Full Text PDFThe DREF [DRE (DNA replication-related element)-binding factor], which regulates the transcription of a group of cell proliferation-related genes in Drosophila, also controls the expression of three genes involved in mtDNA (mitochondrial DNA) replication and maintenance. In the present study, by in silico analysis, we have identified DREs in the promoter region of a gene participating in mtDNA transcription, the DmTTF (Drosophila mitochondrial transcription termination factor). Transient transfection assays in Drosophila S2 cells, with mutated versions of DmTTF promoter region, showed that DREs control DmTTF transcription; moreover, gel-shift and ChIP (chromatin immunoprecipitation) assays demonstrated that the analysed DRE sites interact with DREF in vitro and in vivo.
View Article and Find Full Text PDF