The abscisic acid (ABA) signal transduction core components in plants include the ABA receptors (PYR/PYL/RCARs), the group A type 2C protein phosphatases (PP2Cs) and the subclass III SNF1-related protein kinases 2 (SnRK2s). In this study, via homology cloning, three CsPYLs, four CsPP2Cs and two CsSnRK2s partial cDNAs were obtained in cucumber (Cucumis sativus). In silico analysis results indicated that all CsPYL, CsPP2C, and CsSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively.
View Article and Find Full Text PDFAbscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.
View Article and Find Full Text PDF