IgE-mediated hypersensitivity is central to the pathogenesis of asthma and other allergic diseases. Although neutralization of serum IgE with IgE-specific antibodies is in general an efficacious treatment for allergic asthma, one limitation of this approach is its lack of effect on IgE production. Here, we have developed a strategy to disrupt IgE production by generating monoclonal antibodies that target a segment of membrane IgE on human IgE-switched B cells that is not present in serum IgE.
View Article and Find Full Text PDFIt has been suggested that IL-17RC forms a complex with IL-17RA to mediate the functions of IL-17A and IL-17F homodimers as well as IL-17A/F heterodimers. It is still unclear whether IL-17RC is absolutely required for the signaling of IL-17 cytokines in vivo. By using Il-17rc-deficient mice, we show that IL-17RC is essential for the signaling of IL-17A, IL-17F, and IL-17A/F both in vitro and in vivo.
View Article and Find Full Text PDFUncontrolled T helper type 1 (T(H)1) and T(H)17 cells are associated with autoimmune responses. We identify surface lymphotoxin-alpha (LT-alpha) as common to T(H)0, T(H)1 and T(H)17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-alpha. Depleting LT-alpha-specific mAb inhibited T cell-mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis.
View Article and Find Full Text PDFHere we have identified a surface protein, TIGIT, containing an immunoglobulin variable domain, a transmembrane domain and an immunoreceptor tyrosine-based inhibitory motif that was expressed on regulatory, memory and activated T cells. Poliovirus receptor, which is expressed on dendritic cells, bound TIGIT with high affinity. A TIGIT-Fc fusion protein inhibited T cell activation in vitro, and this was dependent on the presence of dendritic cells.
View Article and Find Full Text PDF10C12, a human antibody F(ab')2, which specifically binds to the gamma-carboxyglutamic acid domain of factor IX/factor IXa (F.IX/IXa), interferes with all known coagulation processes in which F.IX/IXa is involved.
View Article and Find Full Text PDF