Publications by authors named "Canhui Lu"

Ionogels are widely studied as promising ionic thermoelectric (i-TE) materials to harvest low-grade waste heat into electrical energy due to their huge thermopower and good ionic conductivity, providing a feasible way to sustainable development. Herein, a p-type i-TE cellulose ionogel (CIG) based on Soret effect is prepared by dissolving cellulose in an ionic liquid (IL) and subsequent water-absorbing induced gelation. Its morphological structure and IL distribution are intuitively investigated through cryo-focused ion beam-scanning electron microscope.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF
Article Synopsis
  • Crustacean exoskeletons exhibit a unique combination of strength, toughness, and fatigue resistance due to their complex hierarchical structures, which is challenging to replicate in synthetic hydrogels.
  • A new method using cholesteric liquid crystal self-assembly and nanocrystalline engineering has been developed to create hierarchical structural hydrogels that mimic these natural designs, resulting in exceptional mechanical properties (e.g., ultrahigh strength of 46 MPa and remarkable toughness of 170 MJ/m).
  • These engineered hydrogels allow for programmable shape morphing and have potential applications in areas like tissue engineering, wearable devices, and soft robotics.
View Article and Find Full Text PDF
Article Synopsis
  • * The study examines how devulcanization alters the types and amounts of sulfur cross-links in rubber, which affects its ability to be re-vulcanized.
  • * Two different curing methods were tested to see if modifying the sulfur and accelerator ratio could change the sulfur composition of revulcanized rubber, but both methods still led to the majority of cross-links being polysulfidic.
View Article and Find Full Text PDF

Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to give a comprehensive understanding of the physicochemical interactions during the milling process. To provide an in-depth insight of the working effect and mechanism of S3M equipment, finite element method (FEM) analysis is employed to simulate the milling dynamics, which substantiates the correlation between numerical outcomes and experimental observations.

View Article and Find Full Text PDF

Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale.

View Article and Find Full Text PDF

Iridescent cellulose nanocrystal (CNC) films with chiral nematic nanostructures exhibit great potential in optical devices, sensors, painting, and anticounterfeiting applications. CNCs can assemble into a chiral nematic liquid crystal structure by evaporation-assisted self-assembly (EISA) and vacuum-assisted self-assembly (VASA) techniques. However, there is a lack of comprehensive examinations of their structure-property correlations, which are essential for fabricating materials with unique properties.

View Article and Find Full Text PDF

Electromagnetic interference (EMI) shielding and infrared (IR) stealth materials have attracted increasing attention owing to the rapid development of modern communication and military surveillance technologies. However, to realize excellent EMI shielding and IR stealth performance simultaneously remains a great challenge. Herein, a facile strategy is demonstrated to prepare high-efficiency EMI shielding and IR stealth materials of sandwich-structured MXene-based thin foam composites (M-W-M) via filtration and hot-pressing.

View Article and Find Full Text PDF

Solar-powered interfacial evaporation is one of the most efficient state-of-the-art technologies for producing clean water via desalination. Herein, we report a novel bio-based nanofibrous foam for high efficiency solar interface evaporation. To this end, a hybrid membrane of cellulose nanofibers/graphene oxide (GO) is first fabricated by electrospinning coupled with in situ layer-by-layer self-assembly technique.

View Article and Find Full Text PDF

Objectives: During the recent wave of coronavirus disease 2019 (COVID-19) infections in China, most individuals have been vaccinated and exposed to the omicron variant. In the present study, two cohorts were observed in the vaccinated population: vaccinated individuals with symptoms (VIWS) and those without symptoms (VIWOS). Our study aimed to characterize the antibody response in two cohorts: VIWS and VIWOS.

View Article and Find Full Text PDF

Advanced multiplexing optical labels with multiple information channels provide a powerful strategy for large-capacity and high-security information encryption. However, current optical labels face challenges of difficulty to realize independent multi-channel encryption, cumbersome design, and environmental pollution. Herein, multiplexing chiroptical bio-labels integrating with multiple optical elements, including structural color, photoluminescence (PL), circular polarized light activity, humidity-responsible color, and micro/nano physical patterns, are constructed in complex design based on host-guest self-assembly of cellulose nanocrystals and bio-gold nanoclusters.

View Article and Find Full Text PDF
Article Synopsis
  • Construction of biodegradable and renewable biofilms from natural materials shows promise for eco-friendly food packaging.
  • Lignin nanoparticles are used to enhance starch films, improving their mechanical strength, thermal stability, and ability to protect against UV light.
  • Tests demonstrate that these composite films effectively slow down the oxidation of soybean oil, indicating their potential for longer-lasting food storage.
View Article and Find Full Text PDF

Nature builds numerous structurally complex composites with fascinating mechanical robustness and functionalities by harnessing biopolymers and amorphous calcium carbonate (ACC). The key to successfully mimicking these natural designs is efficiently stabilizing ACC, but developing highly efficient, biodegradable, biocompatible, and sustainable stabilizing agents remains a grand challenge since anhydrous ACC is inherently unstable toward crystallization in the wet state. Inspired by the stabilized ACC in crustacean cuticles, we report the efficient stabilization ability of the most abundant biopolymer-cellulose nanofibrils (CNFs) for ACC.

View Article and Find Full Text PDF

Lignocellulosic biomass is the most abundant natural polymer on Earth, but the efficient fractionation and refinery of all its components remain challenging. Acidic deep eutectic solvents refining is a promising method, while it is likely to cause lignin condensation and carbohydrates degradation, especially at server operation conditions. Here we propose the use of acidic deep eutectic solvent (DES), choline chloride/p-toluenesulfonic acid assisted mechanochemical pretreatment (DM) for efficient lignocellulose fractionation at mild condition.

View Article and Find Full Text PDF

Amyloid fibrils have generated steadily increasing traction in the development of natural and artificial materials. However, it remains a challenge to construct bulk amyloid films directly from amyloid fibrils due to their intrinsic brittleness. Here, a facile and general methodology to fabricate macroscopic and tunable amyloid films via fast electrostatic self-assembly of amyloid fibrils at the air-water interface is introduced.

View Article and Find Full Text PDF

In this work, a unique three-dimensional nanofibrous foam of cellulose@g-CN@CuO was prepared via electrospinning followed by a foaming process. A cellulose solution in DMAc/LiCl containing g-CN and CuSO was applied for electrospinning, while aqueous alkali was used as the coagulation bath. The solidification of electrospun cellulose/g-CN nanofibers would be accompanied with in-situ formation of Cu(OH) nanoparticles.

View Article and Find Full Text PDF

In this work, a cellulose nanofibrils (CNFs)/few-layer graphene (FLG) hybrid is mechanically stripped from bamboo pulp and expanded graphene (EG) using a grinder. This strategy is scalable and environmentally friendly for high-efficiency exfoliation and dispersion of graphene in an aqueous medium. The in situ-generated CNFs play a key role in this process, acting as a "green" dispersant.

View Article and Find Full Text PDF

Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials.

View Article and Find Full Text PDF

Delicately aligned structures of two-dimensional (2D) MXene nanosheets have demonstrated positive effects on applications, especially in electromagnetic interference (EMI) shielding and infrared (IR) stealth. However, precise regulation of structural assembly by theory-guided solution processing is still a great challenge. Herein, one-dimensional (1D) cellulose nanofibers (CNFs) with a high aspect ratio are applied as a reinforcing agent and a rheological modifier for MXene/CNF colloids to fabricate aligned MXene-based materials for EMI shielding and IR stealth.

View Article and Find Full Text PDF

Despite of the fact that polymers have brought tremendous convenience to human life, they have also inevitably caused considerable environmental pollution after their service life. Therefore, a feasible strategy that can effectively recycle waste polymers and endow them with high added value is much desired. Superwetting materials have shown great promise in oily wastewater treatment because of their high oil/water separation efficiency.

View Article and Find Full Text PDF

Electrospun cellulose nanofiber nonwovens have shown promise in wound dressing owing to the highly interconnected pore structure, high hydrophilicity coupled with other coveted characteristics of biodegradability, biocompatibility and renewability. However, electrospun cellulose wound dressings with loaded drugs for better wound healing have been rarely reported. In this study, a novel wound dressing with a high drug loading capacity and sustained drug release properties was successfully fabricated via electropinning of cellulose followed by polyethylenimine (PEI)-functionalization.

View Article and Find Full Text PDF

A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. In SEM images, the aerogel was highly porous with abundant interconnected pores, and its carbon-fiber skeleton was evenly covered by iron particles.

View Article and Find Full Text PDF

The development of modern electronics has raised great demand for multifunctional materials to protect electronic instruments against electromagnetic interference (EMI) radiation and ice accretion in cold weather. However, it is still a great challenge to prepare high-performance multifunctional films with excellent flexibilty, mechanical strength, and durability. Here, we propose a layer-by-layer assembly of cellulose nanofiber (CNF)/TiCT nanocomposites (TM) on a bacterial cellulose (BC) substrate repeated spray coating.

View Article and Find Full Text PDF

Carbon aerogels (CA) derived from bamboo cellulose fibers were coupled with TiO to form CA/TiO hybrids, which exhibited extraordinary performance on the photo-catalytic degradation of methylene blue (MB). The structure and morphology of CA/TiO were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectrum. The CA displayed a highly porous and interconnected three-dimensional framework structure, while introducing the catalytic active sites of TiO onto the aerogel scaffold could remarkably enhance its photo-catalytic activity.

View Article and Find Full Text PDF

Three-dimensional (3D) printing technology with satisfactory speed and accuracy has been a powerful force in biomaterial processing. Early studies on 3D printing of biomaterials mainly focused on their biocompatibility and cellular viability while rarely attempted to produce robust specimens. Nonetheless, the biomedical applications of polymers can be severely limited by their inherently weak mechanical properties particularly in bone tissue engineering.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session99md22l9ctjg6t5bmkflfmh148kmu4t7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once