Publications by authors named "Caner Caglar"

Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability.

View Article and Find Full Text PDF

The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes ( = 2,589) or whole genomes ( = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated.

View Article and Find Full Text PDF

Leptin-deficient ob/ob mice eat voraciously, and their food intake is markedly reduced by leptin treatment. In order to identify potentially novel sites of leptin action, we used PhosphoTRAP to molecularly profile leptin-responsive neurons in the hypothalamus and brainstem. In addition to identifying several known leptin responsive populations, we found that neurons in the dorsomedial hypothalamus (DMH) of ob/ob mice expressing protein phosphatase 1 regulatory subunit 17 (PPP1R17) constitutively express cFos and that this is suppressed by leptin treatment.

View Article and Find Full Text PDF

Objectives: Melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) regulate food intake and body weight, glucose metabolism and convey the reward value of sucrose. In this report, we set out to establish the respective roles of MCH and conventional neurotransmitters in these neurons.

Methods: MCH neurons were profiled using Cre-dependent molecular profiling technologies (vTRAP).

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) constitutes nearly half of all malignant brain tumors and has a median survival of 15 months. The standard treatment for these lesions includes maximal resection, radiotherapy, and chemotherapy; however, individual tumors display immense variability in their response to these approaches. Genomic techniques such as whole-exome sequencing (WES) provide an opportunity to understand the molecular basis of this variability.

View Article and Find Full Text PDF

Cobblestone lissencephaly (COB) is a severe brain malformation in which overmigration of neurons and glial cells into the arachnoid space results in the formation of cortical dysplasia. COB occurs in a wide range of genetic disorders known as dystroglycanopathies, which are congenital muscular dystrophies associated with brain and eye anomalies and range from Walker-Warburg syndrome to Fukuyama congenital muscular dystrophy. Each of these conditions has been associated with alpha-dystroglycan defects or with mutations in genes encoding basement membrane components, which are known to interact with alpha-dystroglycan.

View Article and Find Full Text PDF

Background: Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis.

View Article and Find Full Text PDF

Exome sequencing analysis of over 2,000 children with complex malformations of cortical development identified five independent (four homozygous and one compound heterozygous) deleterious mutations in KATNB1, encoding the regulatory subunit of the microtubule-severing enzyme Katanin. Mitotic spindle formation is defective in patient-derived fibroblasts, a consequence of disrupted interactions of mutant KATNB1 with KATNA1, the catalytic subunit of Katanin, and other microtubule-associated proteins. Loss of KATNB1 orthologs in zebrafish (katnb1) and flies (kat80) results in microcephaly, recapitulating the human phenotype.

View Article and Find Full Text PDF

Background: Knobloch syndrome is a rare, autosomal recessive, developmental disorder characterized by stereotyped ocular abnormalities with or without occipital skull deformities (encephalocele, bone defects, and cutis aplasia). Although there is clear heterogeneity in clinical presentation, central nervous system malformations, aside from the characteristic encephalocele, have not typically been considered a component of the disease phenotype.

Methods: Four patients originally presented for genetic evaluation of symptomatic structural brain malformations.

View Article and Find Full Text PDF

N-glycanase 1 (NGLY1) is a conserved enzyme that is responsible for the deglycosylation of misfolded N-glycosylated proteins in the cytoplasm prior to their proteasome-mediated degradation. Disruption of this degradation process has been associated with various neurologic diseases including amyotrophic lateral sclerosis and Parkinson's disease. Here, we describe two siblings with neuromotor impairment, apparent intellectual disability, corneal opacities, and neuropathy who were found to possess a novel homozygous frame-shift mutation due to a 4 base pair deletion in NGLY1 (c.

View Article and Find Full Text PDF

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation.

View Article and Find Full Text PDF