Secondary metabolites are compounds not essential for an organism's development, but provide significant ecological and physiological benefits. These compounds have applications in medicine, biotechnology and agriculture. Their production is encoded in biosynthetic gene clusters (BGCs), groups of genes collectively directing their biosynthesis.
View Article and Find Full Text PDFThird-generation sequencing technologies are being increasingly used in microbiome research and this has given rise to new challenges in computational microbiome analysis. Oxford Nanopore's MinION is a portable sequencer that streams data that can be basecalled on-the-fly. Here we give an introduction to the MAIRA software, which is designed to analyze MinION sequencing reads from a microbiome sample, as they are produced in real-time, on a laptop.
View Article and Find Full Text PDFIn microbiome analysis, one main approach is to align metagenomic sequencing reads against a protein reference database, such as NCBI-nr, and then to perform taxonomic and functional binning based on the alignments. This approach is embodied, for example, in the standard DIAMOND+MEGAN analysis pipeline, which first aligns reads against NCBI-nr using DIAMOND and then performs taxonomic and functional binning using MEGAN. Here, we propose the use of the AnnoTree protein database, rather than NCBI-nr, in such alignment-based analyses to determine the prokaryotic content of metagenomic samples.
View Article and Find Full Text PDFMicrobial studies typically involve the sequencing and assembly of draft genomes for individual microbes or whole microbiomes. Given a draft genome, one first task is to determine its phylogenetic context, that is, to place it relative to the set of related reference genomes. We provide a new interactive graphical tool that addresses this task using Mash sketches to compare against all bacterial and archaeal representative genomes in the Genome Taxonomy Database taxonomy, all within the framework of SplitsTree5.
View Article and Find Full Text PDFOne main approach to computational analysis of microbiome sequences is to first align against a reference database of annotated protein sequences (NCBI-nr) and then perform taxonomic and functional binning of the sequences based on the resulting alignments. For both short and long reads (or assembled contigs), alignment is performed using DIAMOND, whereas taxonomic and functional binning, followed by inter- active exploration and analysis, is performed using MEGAN. We provide two step-by-step descriptions of this approach: © 2021 The Authors.
View Article and Find Full Text PDFBulk production of medium-chain carboxylates (MCCs) with 6-12 carbon atoms is of great interest to biotechnology. Open cultures (e.g.
View Article and Find Full Text PDFBMC Bioinformatics
September 2020
Background: Advances in mobile sequencing devices and laptop performance make metagenomic sequencing and analysis in the field a technologically feasible prospect. However, metagenomic analysis pipelines are usually designed to run on servers and in the cloud.
Results: MAIRA is a new standalone program for interactive taxonomic and functional analysis of long read metagenomic sequencing data on a laptop, without requiring external resources.
Methods Mol Biol
January 2020
Metagenomics has become a part of the standard toolkit for scientists interested in studying microbes in the environment. Compared to 16S rDNA sequencing, which allows coarse taxonomic profiling of samples, shotgun metagenomic sequencing provides a more detailed analysis of the taxonomic and functional content of samples. Long read technologies, such as developed by Pacific Biosciences or Oxford Nanopore, produce much longer stretches of informative sequence, greatly simplifying the difficult and time-consuming process of metagenomic assembly.
View Article and Find Full Text PDFBackground: Short-read sequencing technologies have long been the work-horse of microbiome analysis. Continuing technological advances are making the application of long-read sequencing to metagenomic samples increasingly feasible.
Results: We demonstrate that whole bacterial chromosomes can be obtained from an enriched community, by application of MinION sequencing to a sample from an EBPR bioreactor, producing 6 Gb of sequence that assembles into multiple closed bacterial chromosomes.
Background: There are numerous computational tools for taxonomic or functional analysis of microbiome samples, optimized to run on hundreds of millions of short, high quality sequencing reads. Programs such as MEGAN allow the user to interactively navigate these large datasets. Long read sequencing technologies continue to improve and produce increasing numbers of longer reads (of varying lengths in the range of 10k-1M bps, say), but of low quality.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are short RNA sequences that guide post-transcriptional regulation of gene expression via complementarity to their target mRNAs. Discovered only recently, miRNAs have drawn a lot of attention. Multiple protein complexes interact to first cleave a hairpin from nascent RNA, export it into the cytosol, trim its loop, and incorporate it into the RISC complex which is important for binding its target mRNA.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
October 2014
MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation.
View Article and Find Full Text PDF