Biodiversity is essential for the functioning of ecosystems and the provision of services. In recent years, the role of plantations in mitigating climate change through carbon sequestration has been highlighted. In the Mediterranean area, high-density poplar plantations in short-rotation with resprouting management (SRC) have been established for biomass purposes on mostly irrigated agricultural land, coexisting with rainfed and irrigated agricultural crops.
View Article and Find Full Text PDFForest biomass is an essential resource in relation to the green transition and its assessment is key for the sustainable management of forest resources. Here, we present a forest biomass dataset for Europe based on the best available inventory and satellite data, with a higher level of harmonisation and spatial resolution than other existing data. This database provides statistics and maps of the forest area, biomass stock and their share available for wood supply in the year 2020, and statistics on gross and net volume increment in 2010-2020, for 38 European countries.
View Article and Find Full Text PDFPoplar short rotation coppice (SRC) systems are important for biomass production and for short-to medium-term carbon (C) sequestration, contributing to a low-carbon bioeconomy and thus helping to mitigate global warming. The productivity and profitability of these plantations are, however, challenged under restrictive irrigation associated with climate change. This study compares the above- and below-ground C sequestration potential and economic viability of a 12-year plantation cycle (4 rotations of 3 years each) under Mediterranean conditions with optimum irrigation (T1) and 50% irrigation reduction (T2), analysing other promising biomass uses in the form of bioproducts.
View Article and Find Full Text PDFForest deadwood is a relevant factor in the provision of ecosystem services (forest biodiversity, carbon sequestration, recreational and aesthetic values), but it also influences the risk and impact of forest perturbations. Hence, reliable estimations are urgently need in the lack of detailed information in Mediterranean forests at large scales. In this study we provide, for the first time, national-level estimations for Spain based on the information from the Spanish National Forest Inventory (38,945 plots).
View Article and Find Full Text PDFTree species have good tolerance to a range of environmental conditions, though their ability to respond and persist to environmental changes is dramatically reduced at the rear-edge distribution limits. At those edges, gene flow conferring adaptation is impaired due to lack of populations at lower latitudes. Thus, trees mainly rely on phenotypic changes to buffer against long-term environmental changes.
View Article and Find Full Text PDFThe quantification of forests available for wood supply (FAWS) is essential for decision-making with regard to the maintenance and enhancement of forest resources and their contribution to the global carbon cycle. The provision of harmonized forest statistics is necessary for the development of forest associated policies and to support decision-making. Based on the National Forest Inventory (NFI) data from 13 European countries, we quantify and compare the areas and aboveground dry biomass (AGB) of FAWS and forest not available for wood supply (FNAWS) according to national and reference definitions by determining the restrictions and associated thresholds considered at country level to classify forests as FAWS or FNAWS.
View Article and Find Full Text PDFIn Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution.
View Article and Find Full Text PDFClimatic scenarios for the Mediterranean region forecast increasing frequency and intensity of drought events. Consequently, a reduction in L. distribution range is projected within the region, with this species being outcompeted at lower elevations by more drought-tolerant taxa such as Willd.
View Article and Find Full Text PDFAccurate carbon-balance accounting in forest soils is necessary for the development of climate change policy. However, changes in soil organic carbon (SOC) occur slowly and these changes may not be captured through repeated soil inventories. Simulation models may be used as alternatives to SOC measurement.
View Article and Find Full Text PDFBackground: Early branching or syllepsis has been positively correlated with high biomass yields in short-rotation coppice (SRC) poplar plantations, which could represent an important lignocellulosic feedstock for the production of second-generation bioenergy. In prior work, we generated hybrid poplars overexpressing the chestnut gene (), which featured c. 80% more sylleptic branches than non-modified trees in growth chambers.
View Article and Find Full Text PDFPlant-plant interactions influence how forests cope with climate and contribute to modulate species response to future climate scenarios. We analysed the functional relationships between growth, climate and competition for Pinus sylvestris, Quercus pyrenaica and Quercus faginea to investigate how stand competition modifies forest sensitivity to climate and simulated how annual growth rates of these species with different drought tolerance would change throughout the 21st century. Dendroecological data from stands subjected to thinning were modelled using a novel multiplicative nonlinear approach to overcome biases related to the general assumption of a linear relationship between covariates and to better mimic the biological relationships involved.
View Article and Find Full Text PDFGlobal change challenges forest adaptability at the distributional limit of species. We studied ring-porous Quercus canariensis Willd. xylem traits to analyze how they adjust to spatio-temporal variability in climate.
View Article and Find Full Text PDF