Publications by authors named "Canellas E"

New high-density polyethylene (HDPE) manufactured from different percentage of post-consumer recycled HDPE milk bottles was studied through two static and dynamic migration tests using saliva simulant to assess the potential hazard to children. Sixty-nine compounds were identified, including several additives used in PE synthesis such as alkanes, alkenes, antioxidants and plasticizers as well as non-intentionally added substances (NIAS) like degradation products such as 2,6-di-tert-butyl-1,4-benzoquinone, 2,4-di-tert-butylphenol, phenol, 2,5-bis(1,1-dimethylethyl)-, 3,5-di-tert-butyl-4-hydroxybenzaldehyde, and 3,5-di-tert-butyl-4-hydroxyacetophenone, or various residues from flavoring agents, cleaning products and essential oils. Some of these compounds as the isomers p and o t-butylcyclohexyl acetate, 3-Octanol, 3,7-dimethyl- and thujanol acetate (3-) pose a potential risk to children, as their concentrations exceed the recommended Cramer values for high percentages of recycling.

View Article and Find Full Text PDF

Ion mobility spectrometry (IMS) is a rapid gas-phase separation technique, which can distinguish ions on the basis of their size, shape, and charge. The IMS-derived collision cross section (CCS) can serve as additional identification evidence for the screening of environmental organic micropollutants (OMPs). In this work, we summarize the published experimental CCS values of environmental OMPs, introduce the current CCS prediction tools, summarize the use of IMS and CCS in the analysis of environmental OMPs, and finally discussed the benefits of IMS and CCS in environmental analysis.

View Article and Find Full Text PDF

The COVID-19 pandemic has led to children using polymeric FFP2 and polymeric surgical masks on a daily basis. Children often bite and suck on such masks as they wear them closed to their mouths. In this work, the migration of contaminants from printed and unprinted children`s masks to a saliva simulant has been studied.

View Article and Find Full Text PDF

Per-poly fluoroalkyl substances (PFASs) are a group of synthetic fluorine compounds used in food packaging materials to repel water and fats. This study assessed the chemical migration of PFAS from different food contact materials, including cardboard, recycled cardboard, biopolymer, paper and Teflon trays, from various markets. Migration assays were conducted using Tenax® as a food simulant, which was optimized by subjecting it to three consecutive extractions with 3 mL of ethanol within an hour.

View Article and Find Full Text PDF

The identification of migrates from food contact materials (FCMs) is challenging due to the complex matrices and limited availability of commercial standards. The use of machine-learning-based prediction tools can help in the identification of such compounds. This study presents a workflow to identify nonvolatile migrates from FCMs based on liquid chromatography-ion mobility-high-resolution mass spectrometry together with in silico retention time (RT) and collision cross section (CCS) prediction tools.

View Article and Find Full Text PDF

The use of ion mobility separation (IMS) in conjunction with high-resolution mass spectrometry has proved to be a reliable and useful technique for the characterization of small molecules from plastic products. Collision cross-section (CCS) values derived from IMS can be used as a structural descriptor to aid compound identification. One limitation of the application of IMS to the identification of chemicals from plastics is the lack of published empirical CCS values.

View Article and Find Full Text PDF

The chemicals in food contact materials (FCMs) can migrate into food and endanger human health. In this study, we developed a database of traveling wave collision cross section in nitrogen (CCS) values for extractables and leachables from FCMs. The database contains a total of 1038 CCS values from 675 standards including those commonly used additives and nonintentionally added substances in FCMs.

View Article and Find Full Text PDF

The synthetic chemicals in food contact materials can migrate into food and endanger human health. In this study, the traveling wave collision cross section in nitrogen values of more than 400 chemicals in food contact materials were experimentally derived by traveling wave ion mobility spectrometry. A support vector machine-based collision cross section (CCS) prediction model was developed based on CCS values of food contact chemicals and a series of molecular descriptors.

View Article and Find Full Text PDF

Biodegradable materials are increasingly being used in manufacturing processes due to their environmental benefits. In this work, a study has been performed to assess the migration of compounds from biodegradable multilayer teacups to a tea solution. Liquid chromatography in conjunction with ion-mobility quadrupole time-of-flight mass spectrometry has been used for the elucidation of non-volatile compounds.

View Article and Find Full Text PDF

The characterization and quantification of phenolic compounds in bearberry leaves were performed using hyphenated ion mobility spectroscopy (IMS) and a quadrupole time-of-flight mass spectrometer. A higher identification confidence level was obtained by comparing the measured collision cross section (CCS) with predicted values using a machine learning algorithm. A total of 88 compounds were identified, including 14 arbutin derivatives, 33 hydrolyzable tannins, 6 flavanols, 26 flavonols, 9 saccharide derivatives, and glycosidic compounds.

View Article and Find Full Text PDF

Polyurethane adhesives are used to bond agglomerated cork and natural disk cork to produce cork stoppers that are used in champagne bottles. These adhesives are manufactured by reacting polyols with an excess of diisocyanates. Isocyanates are highly reactive compounds that have a propensity to form non-intentionally added substances (NIAS) in the end product.

View Article and Find Full Text PDF

An exhaustive migration study of eight corks, made of ethylene-vinyl acetate, was carried out to identify any non-volatile and volatile compounds using an untargeted approach. The challenge associated with the structural elucidation of unknowns was undertaken using both ultra-high-performance liquid chromatography coupled to an ion-mobility separation quadrupole-time of flight mass spectrometer and gas chromatography mass spectrometry. A total of fifty compounds were observed to migrate from the corks, and among these additives such as antioxidants (Butyl 4-hydroxybenzoate, Irganox 1010, Irganox 1075, Irgafos 168 and BHT) or lubricants (EBO and octadecanamide, N,N'-1,2-ethanediylbis-) were identified.

View Article and Find Full Text PDF

Oligomers, are, in general, unknown components of the polymer. These oligomers can migrate from the polymer into the food and become a non-intentionally added substance to the food. In this work, ion mobility time-of-flight mass spectrometry has been used to identify oligomers migrating from kitchenware.

View Article and Find Full Text PDF

Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile compounds of minced pork meat during storage. The origin of aromatic hydrocarbons in pork was verified by migration test. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were applied to characterize the profile of volatile compounds in pork meat and identify the potential volatile markers associated with the spoilage of pork.

View Article and Find Full Text PDF

The total phenolic content (TPC) and antioxidant capacity have been considered as important quality parameters for plant extracts. In this study, bearberry leaves were regarded as studied subject and a reliable method was established to predict the TPC and antioxidant capacity of bearberry leaves. Ultraviolet-visible spectrometry (UV-Vis) and ultra high pressure liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) were used to provide spectral fingerprinting and metabolomic profiling.

View Article and Find Full Text PDF

Sealants, incorporated in the lids of food cans to ensure the can is hermetically sealed, are formulated from a wide variety of compounds. These compounds and associated non-intentionally added substances (NIAS) could migrate to the food contained in the can. In this work, ion mobility quadrupole time-of-flight mass spectrometry coupled to ultra-high performance liquid chromatography (UHPLC-IM-QTOF-MS) has been used to obtain ion mobility filtered extracted ion chromatograms.

View Article and Find Full Text PDF

Seven commercial samples, consisted of plastic bags, tetrabrik and box, were evaluated by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) to find the compounds responsible for off-odors in different PP, PE, multilayer cardboard and paper materials used for food contact. Migration assays were carried out with Tenax as food simulant to analyze the food safety as well as to evaluate the odor intensity after migration assay. Forty six compounds with characteristic odors were directly found in the materials studied.

View Article and Find Full Text PDF

Nontarget analysis of nonvolatile substances in complex samples is a very challenging task that requires powerful analytical techniques and experience of analyzing such samples. An extensive study was conducted in order to identify nonintentionally added substances (NIAS) migrating from 18 polyethylene (PE) samples intended to be in contact with food. The migration assays were performed in five simulants and analyzed by ultrahigh-performance liquid chromatography (UPLC) coupled to an ion-mobility separation (IMS) quadrupole-time-of-flight (QTOF) mass spectrometer.

View Article and Find Full Text PDF

Varnishes are normally applied on printed food packaging to protect it from smearing and scratching. Moreover, they may be applied on the food contact surface in order to improve resistance towards moisture and fat. Some of the compounds that make up the varnish formulation could migrate to the food.

View Article and Find Full Text PDF

A flexible multilayer with selenium nanoparticles incorporated has been used to build an antioxidant packaging. The oxidation of hazelnuts, walnuts, and potato chips was tested at laboratory scale. Hexanal released by the nuts, fatty acids oxidation study, TBARS (thiobarbituric acid reactive substances), and tasting were compared to study the oxidation of foods packaged with this antioxidant packaging.

View Article and Find Full Text PDF

Migration of non volatile compounds from twenty six PP films used as food contact materials has been studied in four simulants (ethanol 95% and 10%, acetic acid 3% and Tenax ®) and analyzed by UPLC-MS/QTOF. Seventy six compounds have been identified, where 76% of them were non-intentionally added substances (NIAS) coming from degradation of additives used, such as methyl or ethyl or hexyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl) from irganox 1076 and irganox 1010 degradation; or impurities such as N,N-bis(2-hydroxyethyl) amines, or compounds of unknown origin, like hydro-ceramides. The most common compounds found were glyceryl monostearate or monopalmitate, erucamide, irganox 1010, irgafos 168, irgafos 168 OXO, N,N-bis(2-hydroxyethyl) tridecylamine and N,N-bis(2-hydroxyethyl) pentadecylamine.

View Article and Find Full Text PDF

Unlabelled: Migration from a multilayer plastic material intended for food contact showed that 2,4,7,9-tetramethyl-5-decyne-4,7-diol mixture (surfynol), used as a surfactant in the adhesive employed to build the multilayer, was transferred to water and other food simulants in contact with the plastic. When these multilayer plastics were used for containing seminal doses for artificial insemination, it was found that fertility was seriously damaged in terms of motility, acrosome integrity, mitochondrial activity and penetration capacity in the cells, thus affecting male fertility. Quantitative proteomic analysis of exposed germinal cells demonstrated the inhibition of key proteins involved in the fertilization capacity by affecting the cytoskeleton, sperm motility, the energy machinery and sperm defense mechanisms against oxidation, therefore confirming the surfactant-induced male infertility.

View Article and Find Full Text PDF

The suitability of an acrylic adhesive used on food packaging was studied. Six potential migrants were identified using GC-MS and UPLC-QTOF. Five compounds were intentionally added (2-butoxyethanol and 2,4,7,9-tetramethyl-5-decyne-4,7-diol 10 (TMDD) and TMDD ethoxylates).

View Article and Find Full Text PDF

Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method.

View Article and Find Full Text PDF

61 different non-volatile compounds were determined in Agaricus Bisporus sliced mushrooms using UHPLC/Q-TOF with MS(E) technology. Both positive and negative electrospray ionization were applied. Chemical profile of three parts of mushroom was created: cap, gills and stipe.

View Article and Find Full Text PDF