Pore space partitioning (PSP) is methodically suited for dramatically increasing the density of guest binding sites, leading to the partitioned acs (pacs) platform capable of record-high uptake for CO and small hydrocarbons such as CH. For gas separation, achieving high selectivity amid PSP-enabled high uptake offers an enticing prospect. Here we aim for high selectivity by introducing the bioisosteric (BIS) concept, a widely used drug design strategy, into the realm of pore-space-partitioned MOFs.
View Article and Find Full Text PDFAn ideal material for CH/CH separation would simultaneously have the highest CH uptake capacity and the highest CH/CH selectivity. But such material is elusive. A benchmark material for ethane-selective CH/CH separation is peroxo-functionalized MOF-74-Fe that exhibits the best known separation performance due to its high CH/CH selectivity (4.
View Article and Find Full Text PDFBuilt from an unusual high-charge-density ligand 2,5-dioxido-1,4-benzenedicarboxylate (dobdc), MOF-74 M (Mdobdc) have unsurpassed gas uptake and separation properties. It is thus intriguing to mimic or replicate such ligand properties in other chemical systems. Here, we show a ligand charge separation (LCS) model that could offer one pathway toward this goal.
View Article and Find Full Text PDF