Publications by authors named "Candra Zonyfar"

State‑of‑the‑art medical studies proved that predicting CYP450 enzyme inhibitors is beneficial in the early stage of drug discovery. However, accurate machine learning-based (ML) in silico methods for predicting CYP450 inhibitors remains challenging. Here, we introduce GTransCYPs, an improved graph neural network (GNN) with a transformer mechanism for predicting CYP450 inhibitors.

View Article and Find Full Text PDF

Predicting Protein-Ligand Binding Affinity (PLBA) is pivotal in drug development, as accurate estimations of PLBA expedite the identification of promising drug candidates for specific targets, thereby accelerating the drug discovery process. Despite substantial advancements in PLBA prediction, developing an efficient and more accurate method remains non-trivial. Unlike previous computer-aid PLBA studies which primarily using ligand SMILES and protein sequences represented as strings, this research introduces a Deep Learning-based method, the Enhanced Representation Learning on Protein-Ligand Graph Structured data for Binding Affinity Prediction (ERL-ProLiGraph).

View Article and Find Full Text PDF