The magnetoelectric behavior of epitaxial Fe-Ga microstructures on top of a (001)-oriented PMN-PT piezoelectric substrate is imaged with magnetic X-ray microscopy. Additionally, the micron-scale strain distribution in PMN-PT is characterized by X-ray microdiffraction and examined with respect to the results of the Fe-Ga magnetoelectric switching. The magnetic reorientation of Fe-Ga is found to be strongly correlated with size, shape, and crystallographic orientation of the microstructures.
View Article and Find Full Text PDFObjective: The objective of this study was the preclinical design and construction of a flexible intrasphenoid coil aiming for submillimeter resolution of the human pituitary gland.
Methods: Sphenoid sinus measurements determined coil design constraints for use in > 95% of adult patients. Temperature safety parameters were tested.
Magnetic domain wall (DW)-based logic devices offer numerous opportunities for emerging electronics applications allowing superior performance characteristics such as fast motion, high density, and nonvolatility to process information. However, these devices rely on an external magnetic field, which limits their implementation; this is particularly problematic in large-scale applications. Multiferroic systems consisting of a piezoelectric substrate coupled with ferromagnets provide a potential solution that provides the possibility of controlling magnetization through an electric field via magnetoelastic coupling.
View Article and Find Full Text PDFProgramming magnetic fields with microscale control can enable automation at the scale of single cells ≈10 µm. Most magnetic materials provide a consistent magnetic field over time but the direction or field strength at the microscale is not easily modulated. However, magnetostrictive materials, when coupled with ferroelectric material (i.
View Article and Find Full Text PDFSpinel iron oxide nanocrystals (NCs) have been reported to have atomic-level core and surface structural features that differ from those of the bulk material. Recent advances in a continuous growth synthesis of metal oxide NCs make it possible to prepare a series of NCs with subnanometer control of size with diameters below 10 nm that are well-suited for investigating size-dependent structure and reactivity. Here, we study the evolution of size-dependent structure in spinel iron oxide and determine how nanoscale structure influences the growth of NCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The magnetoelectric properties of exchange-coupled Ni/CoFeB-based composite multiferroic microstructures are investigated. The strength and sign of the magnetoelastic effect are found to be strongly correlated with the ratio between the thicknesses of two magnetostrictive materials. In cases where the thickness ratio deviates significantly from one, the magnetoelastic behavior of the multiferroic microstructures is dominated by the thicker layer, which contributes more strongly to the observed magnetoelastic effect.
View Article and Find Full Text PDFThe number of procedures performed with robotic surgery may exceed one million globally in 2018. The continual lack of haptic feedback, however, forces surgeons to rely on visual cues in order to avoid breaking sutures due to excessive applied force. To mitigate this problem, the authors developed and validated a novel grasper-integrated system with biaxial shear sensing and haptic feedback to warn the operator prior to anticipated suture breakage.
View Article and Find Full Text PDFAppl Phys Lett
January 2019
Designing and implementing means of locally trapping magnetic beads and understanding the factors underlying the bead capture force are important steps toward advancing the capture-release process of magnetic particles for biological applications. In particular, capturing magnetically labeled cells using magnetic microstructures with perpendicular magnetic anisotropy (PMA) will enable an approach to cell manipulation for emerging lab-on-a-chip devices. Here, a Co (0.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2019
Realistic modeling of biologic material is required for optimizing fidelity in computer-aided surgical training and assistance systems. The modeling of liver tissue has remained challenging due to its nonlinear viscoelastic properties and high hysteresis of the stress-strain relation. While prior studies have described the behavior of liver tissue during the loading status (in elongation, compression, or indentation tests) or unloading status (in stress relaxation or creep tests), a hysteresis curve with both loading and unloading processes was incompletely defined.
View Article and Find Full Text PDFAs robotic surgery has increased in popularity, the lack of haptic feedback has become a growing issue due to the application of excessive forces that may lead to clinical problems such as intraoperative and postoperative suture breakage. Previous suture breakage warning systems have largely depended on visual and/or auditory feedback modalities, which have been shown to increase cognitive load and reduce operator performance. This work catalogues a new sensing technology and haptic feedback system (HFS) that can reduce instances of suture failure without negatively impacting performance outcomes including knot quality.
View Article and Find Full Text PDFStrain-coupled multiferroic heterostructures provide a path to energy-efficient, voltage-controlled magnetic nanoscale devices, a region where current-based methods of magnetic control suffer from Ohmic dissipation. Growing interest in highly magnetoelastic materials, such as Terfenol-D, prompts a more accurate understanding of their magnetization behavior. To address this need, we simulate the strain-induced magnetization change with two modeling methods: the commonly used unidirectional model and the recently developed bidirectional model.
View Article and Find Full Text PDFComposite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
This paper describes the design, microfabrication, and characterization of a miniature force sensor for providing tactile feedback in robotic surgical systems. We demonstrate for the first time a microfabricated sensor that can provide triaxial sensing (normal, x-shear, y-shear) in a single sensor element that can be integrated with commercial robotic surgical graspers. Features of this capacitive force sensor include differential sensing in the shear directions as well as a design where all electrical connections are on one side, leaving the backside pristine as the sensing face.
View Article and Find Full Text PDFThis review examines the state of the art for manufacturing non-planar miniature channels and actuators from PDMS, where non-planar structures are defined here as those beyond simple extrusions of 2D designs, either with rounded or variable cross sections or with an emergence of the channel trajectory out-of-plane. The motivation for 3D PDMS structures and advances in their fabrication are described, focusing on geometries that were previously unachievable through conventional microfabrication. The motivation for non-planar microfluidic channels and actuators is first discussed and the existing literature is grouped into general fabrication themes and described.
View Article and Find Full Text PDFBackground: Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.
View Article and Find Full Text PDFIn this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates.
View Article and Find Full Text PDFThis work reports on zeolitic imidazolate framework (ZIF)-coupled microscale resonators for highly sensitive and selective gas detection. The combination of microscale resonators and nanoscale materials simultaneously permits the benefit of larger capture area for adsorption from the resonator and enhanced surface adsorption capacity from the nanoscale ZIF structure. Dielectrophoresis (DEP) was demonstrated as a novel method for directly assembling concentrated ZIF nanoparticles on targeted regions of silicon resonant sensors.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies.
View Article and Find Full Text PDFWe have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency.
View Article and Find Full Text PDFExperiments were conducted to evaluate a silicon accelerometer as an implantable sound sensor for implantable hearing aids. The main motivation of this study is to find an alternative sound sensor that is implantable inside the body, yet does not suffer from the signal attenuation from the body. The merit of the accelerometer sensor as a sound sensor will be that it will utilize the natural mechanical conduction in the middle ear as a source of the vibration.
View Article and Find Full Text PDFPlatelet aggregation to incremental doses of eight different platelet agonists (collagen, thrombin, platelet-activating factor [PAF], arachidonic acid [AA] plus epinephrine, the calcium ionophore A23187, ADP, phospholipase C [PLC], and 12-O-tetradecanoyl phorbol-13-acetate [TPA]) was compared in normal (N) and cyclic hematopoietic (CH) dogs. Platelet aggregation was defective with collagen, PAF, TPA, and possibly thrombin as agonists but normal when ADP, PLC, arachidonic acid plus epinephrine, and A23187 were used as agonists with CH platelets. In heterozygous CH dogs, platelet aggregation was intermediately defective when tested with collagen and PAF as agonists.
View Article and Find Full Text PDFIn this paper, the influence of interferons alpha + beta (IFN alpha + beta) on the levels of interleukin-1 (IL-1) produced by murine peritoneal exudate macrophages following subsequent stimulation with lipopolysaccharide (LPS), colony-stimulating factor-1 (CSF-1), or both was investigated. The results indicate that preincubation with IFN alpha + beta enhances IL-1 production in response to CSF-1 as well as to LPS. Moreover, prior exposure to IFN alpha + beta enhanced the apparently synergistic production of IL-1 in response to the two stimuli combined.
View Article and Find Full Text PDF