The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics.
View Article and Find Full Text PDFBackground: No effective method has yet been developed to efficiently reconstruct the larynx and restore its function. Decellularization has recently been tested for this purpose with very promising results. The goal of decellularization is to remove cells leaving an intact scaffold made of an extracellular matrix (ECM).
View Article and Find Full Text PDFThe biocompatibility and the antioxidant activity of barium titanate (BaTiO) and lithium niobate (LiNbO) were investigated on a neuronal cell line, the PC12, to explore the possibility of using piezoelectric nanoparticles in the treatment of inner ear diseases, avoiding damage to neurons, the most delicate and sensitive human cells. The cytocompatibility of the compounds was verified by analysing cell viability, cell morphology, apoptotic markers, oxidative stress and neurite outgrowth. The results showed that BaTiO and LiNbO nanoparticles do not affect the viability, morphological features, cytochrome c distribution and production of reactive oxygen species (ROS) by PC12 cells, and stimulate neurite branching.
View Article and Find Full Text PDFA cochlear implant (CI) is an electronic device that enables hearing recovery in patients with severe to profound hearing loss. Although CIs are a successful treatment for profound hearing impairment, their effectivity may be improved by reducing damages associated with insertion of electrodes in the cochlea, thus preserving residual hearing ability. Inner ear trauma leads to inflammatory reactions altering cochlear homeostasis and reducing post-operative audiological performances and electroacoustic stimulation.
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) affects the inner ear compartment and can be caused by different factors. Usually, the lack, death, or malfunction of sensory cells deputed to transduction of mechanic-into-electric signals leads to SNHL. To date, the therapeutic option for patients impaired by severe or profound SNHL is the cochlear implant (CI), a high-tech electronic device replacing the entire cochlear function.
View Article and Find Full Text PDFSensorineural hearing loss due to aging, noise exposure, trauma or drug ototoxicity is irreversible because cochlear hair cells and neurons cannot regenerate. Recently, therapeutic strategies involving nanoparticles have been developed as innovative drug delivery systems. Thermodynamically stable liquid crystalline nanoparticles based on the polar lipid glycerol monooleate (GMO NP, cubosomes), nontoxic and able to encapsulate both hydrophilic and hydrophobic compounds, were produced and tested for biocompatibility in an immortalized Organ of Corti derived cell line (OC-k3), through cell viability and cytomorphological assays, and Western blot expression profiles of apoptotic markers.
View Article and Find Full Text PDFCis-diamminedichloridoplatinum (II) (cisplatin) is a chemotherapeutic drug currently prescribed for the treatment of many types of human cancer, but its use is associated with numerous adverse effects, one of which is ototoxicity. Cisplatin-induced hearing loss is mainly attributed to oxidative stress, but recent data suggest that inflammation could be the trigger event leading to inner ear cell death through endoplasmic reticulum (ER) stress, autophagy, necroptosis, and then intrinsic apoptosis. In this review, we look at the molecular targets of cisplatin, and the intracellular pathways underlying its ototoxicity.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2019
Cochlear implants, the only way to recover from severe/profound hearing loss, may cause adverse effects, among which reactions to silicone materials coating implant electrodes, leading to apoptosis and necrosis of spiral ganglion cells. Our aim was to evaluate whether three polydimethylsiloxane (PDMS) compounds (hexadimethylsiloxane, octamethyltrisiloxane, decamethylcyclopentasiloxane) used in silicone rods could exert toxic effects on an in vitro neuronal cell model (PC12). Cell viability, morphology and mRNA expression levels of apoptotic markers were evaluated on PC12 cells at different PDMS dilutions up to 6 days of exposure.
View Article and Find Full Text PDF