Spatial cognition plays a crucial role in our daily lives. The relationship between spatial abilities and mathematical performance is well-established, with visuospatial training offering significant benefits in academic STEM (Science, Technology, Engineering, and Mathematics) disciplines. Developing visuospatial training requires an objective evaluation of spatial cognition and consideration of various 3D displays.
View Article and Find Full Text PDFIn technology education, there has been a paradigmatic shift towards student-centered approaches such as learning by doing, constructionism, and experiential learning. Educational robotics allows students to experiment with building and interacting with their creations while also fostering collaborative work. However, understanding the student's response to these approaches is crucial to adapting them during the teaching-learning process.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a neurodevelopmental disorder affecting individuals worldwide and characterized by deficits in social interaction along with the presence of restricted interest and repetitive behaviors. Despite decades of behavioral research, little is known about the brain mechanisms that influence social behaviors among children with ASD. This, in part, is due to limitations of traditional imaging techniques specifically targeting pediatric populations.
View Article and Find Full Text PDFSpatial cognition plays a crucial role in academic achievement, particularly in science, technology, engineering, and mathematics (STEM) domains. Immersive virtual environments (VRs) have the growing potential to reduce cognitive load and improve spatial reasoning. However, traditional methods struggle to assess the mental effort required for visuospatial processes due to the difficulty in verbalizing actions and other limitations in self-reported evaluations.
View Article and Find Full Text PDFEye tracking is one of the techniques used to investigate cognitive mechanisms involved in the school context, such as joint attention and visual perception. Eye tracker has portability, straightforward application, cost-effectiveness, and infant-friendly neuroimaging measures of cognitive processes such as attention, engagement, and learning. Furthermore, the ongoing software enhancements coupled with the implementation of artificial intelligence algorithms have improved the precision of collecting eye movement data and simplified the calibration process.
View Article and Find Full Text PDFHyperscanning is a promising tool for investigating the neurobiological underpinning of social interactions and affective bonds. Recently, graph theory measures, such as modularity, have been proposed for estimating the global synchronization between brains. This paper proposes the bootstrap modularity test as a way of determining whether a pair of brains is coactivated.
View Article and Find Full Text PDFSpatial cognition is related to academic achievement in science, technology, engineering, and mathematics (STEM) domains. Neuroimaging studies suggest that brain regions' activation might be related to the general cognitive effort while solving mental rotation tasks (MRT). In this study, we evaluate the mental effort of children performing MRT tasks by measuring brain activation and pupil dilation.
View Article and Find Full Text PDFAttention is a basic human function underlying every other cognitive process. It is demonstrated in the functional Magnetic Resonance Imaging literature that frontoparietal networks are involved with attentive performance while default mode networks are involved with inattentive performance. Yet, it is still not clear whether similar results would be found with functional Near-Infrared Spectroscopy.
View Article and Find Full Text PDFHyperscanning studies using functional Near-Infrared Spectroscopy (fNIRS) have been performed to understand the neural mechanisms underlying human-human interactions. In this study, we propose a novel methodological approach that is developed for fNIRS multi-brain analysis. Our method uses support vector regression (SVR) to predict one brain activity time series using another as the predictor.
View Article and Find Full Text PDF