Publications by authors named "Candice L Swift"

Anaerobic fungi produce biomass-degrading enzymes and natural products that are important to harness for several biotechnology applications. Although progress has been made in the development of methods for extracting nucleic acids for genomic and transcriptomic sequencing of these fungi, most studies are limited in that they do not sample multiple fungal growth phases in batch culture. In this study, we establish a method to harvest RNA from fungal monocultures and fungal-methanogen co-cultures, and also determine an optimal time frame for high-quality RNA extraction from anaerobic fungi.

View Article and Find Full Text PDF

Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems.

View Article and Find Full Text PDF

Wastewater surveillance of SARS-CoV-2 has proven instrumental in mitigating the spread of COVID-19 by providing an economical and equitable approach to disease surveillance. Here, we analyze the correlation of SARS-CoV-2 RNA in influents of seven wastewater plants (WWTPs) across the state of South Carolina with corresponding daily case counts to determine whether underlying characteristics of WWTPs and sewershed populations predict stronger correlations. The populations served by these WWTPs have varying social vulnerability and represent 24% of the South Carolina population.

View Article and Find Full Text PDF

A system for co-cultivation of anaerobic fungi with anaerobic bacteria was established based on lactate cross-feeding to produce butyrate and butanol from plant biomass. Several co-culture formulations were assembled that consisted of anaerobic fungi (Anaeromyces robustus, Neocallimastix californiae, or Caecomyces churrovis) with the bacterium Clostridium acetobutylicum. Co-cultures were grown simultaneously (e.

View Article and Find Full Text PDF

Wastewater surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been leveraged during the Coronavirus Disease 2019 (COVID-19) pandemic as a public health tool at the community and building level. In this study, we compare the sequence diversity of SARS-CoV-2 amplified from wastewater influent to the Columbia, South Carolina, metropolitan wastewater treatment plant (WWTP) and the University of South Carolina campus during September 2020, which represents the peak of COVID-19 cases at the university during 2020. A total of 92 unique mutations were detected across all WWTP influent and campus samples, with the highest frequency mutations corresponding to the SARS-CoV-2 20C and 20G clades.

View Article and Find Full Text PDF
Article Synopsis
  • Anaerobic fungi like Caecomyces churrovis and methanogenic archaea such as Methanobacterium bryantii work together in the rumen to break down lignocellulose, indicating that microbes from different habitats can form beneficial relationships based on their metabolic functions.!* -
  • Research found that co-culturing C. churrovis with M. bryantii led to increased gene expression for enzymes related to carbohydrate breakdown and sugar uptake, suggesting that their partnership enhances biomass decomposition capabilities.!* -
  • The study highlighted the importance of a high-quality genome sequencing of C. churrovis, revealing significant genetic features that relate to carbohydrate processing and confirming that such co-cultures can boost
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for causing the COVID-19 pandemic, can be detected in untreated wastewater. Wastewater surveillance of SARS-CoV-2 complements clinical data by offering earlier community-level detection, removing underlying factors such as access to healthcare, sampling asymptomatic patients, and reaching a greater population. Here, we compare 24-hour composite samples from the influents of two different wastewater treatment plants (WWTPs) in South Carolina, USA: Columbia and Rock Hill.

View Article and Find Full Text PDF
Article Synopsis
  • Anaerobic gut fungi, specifically Neocallimastigomycetes, coexist with bacteria in the digestive systems of large herbivores and may impact bacterial growth due to their rich genetic makeup.
  • In a study, researchers found that when they co-cultivated a particular strain of rumen bacteria (UWB7) with these fungi, both organisms showed significant changes in their gene expression, indicating a close interaction.
  • The findings suggest that while anaerobic fungi are outnumbered, they can still thrive and potentially produce unique antimicrobial compounds in response to the presence of bacteria, highlighting their role as a source for novel antibiotics.
View Article and Find Full Text PDF

Anaerobic fungi are a potential biotechnology platform to produce biomass-degrading enzymes. Unlike model fungi such as yeasts, stress responses that are relevant during bioprocessing have not yet been established for anaerobic fungi. In this work, we characterize both the heat shock and unfolded protein responses of four strains of anaerobic fungi (, and ).

View Article and Find Full Text PDF

Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome.

View Article and Find Full Text PDF

The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities.

View Article and Find Full Text PDF

Anaerobic gut fungi are biomass degraders that form syntrophic associations with other microbes in their native rumen environment. Here, RNA-Seq was used to track and quantify carbohydrate active enzyme (CAZyme) transcription in a synthetic consortium composed of the anaerobic fungus Anaeromyces robustus with methanogen Methanobacterium bryantii. Approximately 5% of total A.

View Article and Find Full Text PDF

Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability.

View Article and Find Full Text PDF

The rapid development of molecular biology and bioinformatics has fueled renewed interests in anaerobic fungi from the phylum Neocallimastigomycota. This chapter presents well-established methods for isolation, routine cultivation, and cryopreservation of anaerobic fungi. Moreover, detailed nucleic acid extraction protocols are provided, which should enable readers to isolate high-quality DNA and RNA from a variety of anaerobic fungal culture media for downstream applications such as next-generation sequencing.

View Article and Find Full Text PDF

We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4'-pentyl-4-cyanobiphenyl (5CB)) that are induced by changes in pH and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session853kb6cv3tnnu499vnm1o5hjg2i7d6n3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once