Publications by authors named "Candi L Lasarge"

Interneuron loss is a prominent feature of temporal lobe epilepsy in both animals and humans and is hypothesized to be critical for epileptogenesis. As loss occurs concurrently with numerous other potentially proepileptogenic changes, however, the impact of interneuron loss in isolation remains unclear. For the present study, we developed an intersectional genetic approach to induce bilateral diphtheria toxin-mediated deletion of Vgat-expressing interneurons from dorsal and ventral hippocampus.

View Article and Find Full Text PDF

Hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is linked to more than a dozen neurologic diseases, causing a range of pathologies, including excess neuronal growth, disrupted neuronal migration, cortical dysplasia, epilepsy and autism. The mTOR pathway also regulates angiogenesis. For the present study, therefore, we queried whether loss of or , both mTOR negative regulators, alters brain vasculature in three mouse models: one with loss restricted to hippocampal dentate granule cells [DGC- knock-outs (KOs)], a second with widespread loss from excitatory forebrain neurons (FB- KOs) and a third with focal loss of from cortical excitatory neurons (f- KOs).

View Article and Find Full Text PDF

Status epilepticus (SE) is a life-threatening medical emergency with significant morbidity and mortality. SE is associated with a robust and sustained increase in serum glucocorticoids, reaching concentrations sufficient to activate the dense population of glucocorticoid receptors (GRs) expressed among hippocampal excitatory neurons. Glucocorticoid exposure can increase hippocampal neuron excitability; however, whether activation of hippocampal GRs during SE exacerbates seizure severity remains unknown.

View Article and Find Full Text PDF

Background: Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed.

View Article and Find Full Text PDF

Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells.

View Article and Find Full Text PDF

Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway is associated with epilepsy, autism and brain growth abnormalities in humans. mTOR hyperactivation often results from developmental somatic mutations, producing genetic lesions and associated dysfunction in relatively restricted populations of neurons. Disrupted brain regions, such as those observed in focal cortical dysplasia, can contain a mix of normal and mutant cells.

View Article and Find Full Text PDF

Loss of the mTOR pathway negative regulator PTEN from hippocampal dentate granule cells leads to neuronal hypertrophy, increased dendritic branching and aberrant basal dendrite formation in animal models. Similar changes are evident in humans with mTOR pathway mutations. These genetic conditions are associated with autism, cognitive dysfunction and epilepsy.

View Article and Find Full Text PDF

Unlabelled: Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects.

View Article and Find Full Text PDF

Abnormal hippocampal granule cells are present in patients with temporal lobe epilepsy, and are a prominent feature of most animal models of the disease. These abnormal cells are hypothesized to contribute to epileptogenesis. Isolating the specific effects of abnormal granule cells on hippocampal physiology, however, has been difficult in traditional temporal lobe epilepsy models.

View Article and Find Full Text PDF

Growing evidence implicates the dentate gyrus in temporal lobe epilepsy (TLE). Dentate granule cells limit the amount of excitatory signaling through the hippocampus and exhibit striking neuroplastic changes that may impair this function during epileptogenesis. Furthermore, aberrant integration of newly-generated granule cells underlies the majority of dentate restructuring.

View Article and Find Full Text PDF

Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered.

View Article and Find Full Text PDF

Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear.

View Article and Find Full Text PDF

The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2).

View Article and Find Full Text PDF

The dentate gyrus is hypothesized to function as a "gate," limiting the flow of excitation through the hippocampus. During epileptogenesis, adult-generated granule cells (DGCs) form aberrant neuronal connections with neighboring DGCs, disrupting the dentate gate. Hyperactivation of the mTOR signaling pathway is implicated in driving this aberrant circuit formation.

View Article and Find Full Text PDF

Both cholinergic and GABAergic projections from the rostral basal forebrain contribute to hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in codistributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase [ChAT] immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 [GAD67] immunopositive) neurons, and total (neuronal nuclei [NeuN] immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task.

View Article and Find Full Text PDF

Gamma aminobutyric acid (GABA)(B) receptors (GABA(B)Rs) have been linked to a wide range of physiological and cognitive processes and are of interest for treating a number of neurodegenerative and psychiatric disorders. As many of these diseases are associated with advanced age, it is important to understand how the normal aging process impacts GABA(B)R expression and signaling. Thus, we investigated GABA(B)R expression and function in the prefrontal cortex (PFC) and hippocampus of young and aged rats characterized in a spatial learning task.

View Article and Find Full Text PDF

Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a "Risky Decision-making Task" that involves choices between small "safe" rewards and large "risky" rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity.

View Article and Find Full Text PDF

Alterations in neuronal Ca(2+) homeostasis are important determinants of age-related cognitive impairment. We examined the Ca(2+) influx, buffering, and electrophysiology of basal forebrain neurons in adult, middle-aged, and aged male F344 behaviorally assessed rats. Middle-aged and aged rats were characterized as cognitively impaired or unimpaired by water maze performance relative to young cohorts.

View Article and Find Full Text PDF

The ability to make advantageous choices among outcomes that differ in magnitude, probability, and delay until their arrival is critical for optimal survival and well-being across the lifespan. Aged individuals are often characterized as less impulsive in their choices than their young adult counterparts, demonstrating an increased ability to forgo immediate in favor of delayed (and often more beneficial) rewards. Such "wisdom" is usually characterized as a consequence of learning and life experience.

View Article and Find Full Text PDF

Cocaine addiction is associated with long-term cognitive alterations including deficits on tests of declarative/spatial learning and memory. To determine the extent to which cocaine exposure plays a causative role in these deficits, adult male Long-Evans rats were given daily injections of cocaine (30 mg/kg/day x 14 days) or saline vehicle. Three months later, rats were trained for 6 sessions on a Morris water maze protocol adapted from Gallagher, Burwell, and Burchinal [Gallagher, M.

View Article and Find Full Text PDF

Rodent models of cognitive aging routinely use spatial performance on the water maze to characterize medial temporal lobe integrity. Water maze performance is dependent upon this system and, as in the aged human population, individual differences in learning abilities are reliably observed among spatially characterized aged rats. However, unlike human aging in which cognitive deficits rarely occur in isolation, few non-spatial learning deficits have been identified in association with spatial impairment among aged rats.

View Article and Find Full Text PDF