Publications by authors named "Candace H Haigler"

Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss to investigate CSLD function without interfering CESA activity.

View Article and Find Full Text PDF

Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations.

View Article and Find Full Text PDF

Premise: The shape of young cotton () fibers varies within and between commercial cotton species, as revealed by previous detailed analyses of one cultivar of and one of . Both narrow and wide fibers exist in cv. Deltapine 90, which may impact the quality of our most abundant renewable textile material.

View Article and Find Full Text PDF

Observable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system.

View Article and Find Full Text PDF

Understanding protein structure and function relationships in cellulose synthase (CesA), including divergent isomers, is an important goal. Here, we report results from mutant complementation assays that tested the ability of sequence variants of AtCesA7, a secondary wall CesA of , to rescue the collapsed vessels, short stems, and low cellulose content of the AtCesA7 null mutant. We tested a catalytic null mutation and seven missense or small domain changes in and near the AtCesA7 FTVTSK motif, which lies near the catalytic domain and may, analogously to bacterial CesA, exist within a substrate "gating loop.

View Article and Find Full Text PDF

Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion.

View Article and Find Full Text PDF

Cellulose microfibrils are synthesized by membrane-embedded cellulose synthesis complexes (CSCs), currently modeled as hexamers of cellulose synthase (CESA) trimers. The three paralogous CESAs involved in secondary cell wall (SCW) cellulose biosynthesis in Arabidopsis (CESA4, CESA7, CESA8) are similar, but nonredundant, with all three isoforms required for assembly and function of the CSC. The molecular basis of protein-protein recognition among the isoforms is not well understood.

View Article and Find Full Text PDF

A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex.

View Article and Find Full Text PDF

Cellulose synthases (CESAs) are glycosyltransferases that catalyze formation of cellulose microfibrils in plant cell walls. Seed plant CESA isoforms cluster in six phylogenetic clades, whose non-interchangeable members play distinct roles within cellulose synthesis complexes (CSCs). A 'class specific region' (CSR), with higher sequence similarity within versus between functional CESA classes, has been suggested to contribute to specific activities or interactions of different isoforms.

View Article and Find Full Text PDF

Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D), which is responsible for the major leaf shapes in cotton.

View Article and Find Full Text PDF

A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes.

View Article and Find Full Text PDF

Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers.

View Article and Find Full Text PDF

Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix.

View Article and Find Full Text PDF

A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution.

View Article and Find Full Text PDF

Background: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G.

View Article and Find Full Text PDF

Virus-Induced Gene Silencing (VIGS) is a useful method for transient downregulation of gene expression in crop plants. The geminivirus Cotton leaf crumple virus (CLCrV) has been modified to serve as a VIGS vector for persistent gene silencing in cotton. Here the use of Green Fluorescent Protein (GFP) is described as a marker for identifying silenced tissues in reproductive tissues, a procedure that requires the use of transgenic plants.

View Article and Find Full Text PDF

The β-1,4-glucan chains comprising cellulose are synthesized by cellulose synthases in the plasma membranes of diverse organisms including bacteria and plants. Understanding structure-function relationships in the plant enzymes involved in cellulose synthesis (CESAs) is important because cellulose is the most abundant component in the plant cell wall, a key renewable biomaterial. Here, we explored the structure and function of the region encompassing transmembrane helices (TMHs) 5 and 6 in CESA using computational and genetic tools.

View Article and Find Full Text PDF

The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface.

View Article and Find Full Text PDF

Fourier transform infrared (FTIR) spectra of cotton fibers harvested at different stages of development were acquired using Universal Attenuated Total Reflectance FTIR (UATR-FTIR). The main goal of the study was to monitor cell wall changes occurring during different phases of cotton fiber development. Two cultivars of Gossypium hirsutum L.

View Article and Find Full Text PDF

Detailed information about the structure and biochemical mechanisms of cellulose synthase (CelS) proteins remained elusive until a complex containing the catalytic subunit (BcsA) of CelS from Rhodobacter sphaeroides was crystalized. Additionally, a 3D structure of most of the cytosolic domain of a plant CelS (GhCESA1 from cotton, Gossypium hirsutum) was produced by computational modeling. This predicted structure contributes to our understanding of how plant CelS proteins may be similar and different as compared with BcsA.

View Article and Find Full Text PDF

A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain.

View Article and Find Full Text PDF

Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species.

View Article and Find Full Text PDF

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii.

View Article and Find Full Text PDF

Background: We previously developed a virus-induced gene silencing (VIGS) vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV). The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: