Publications by authors named "Cancan Wei"

Biosynthesis of D-allulose has been achieved using ketose 3-epimerases (KEases), but its application is limited by poor catalytic performance. In this study, we redesigned a genetically encoded biosensor based on a D-allulose-responsive transcriptional regulator for real-time monitoring of D-allulose. An ultrahigh-throughput droplet-based microfluidic screening platform was further constructed by coupling with this D-allulose-detecting biosensor for the directed evolution of the KEases.

View Article and Find Full Text PDF

D-Allulose, as low-calorie rare sugar, possessed several notable biological activities and was biosynthesized by D-allulose 3-epimerase (DAEase). Here, CcDAE from Clostridium cellulolyticum was successfully immobilization via covalent attachment (RI-CcDAE), and Resin-SpyCatcher/SpyTag-CcDAE modular (DI-CcDAE). Both immobilized CcDAEs exhibited higher thermal and pH stabilities than the free form, and they maintained 80.

View Article and Find Full Text PDF

Ferredoxin (Fdx) is regarded as the main electron carrier in biological electron transfer and acts as an electron donor in metabolic pathways of many organisms. Here, we screened a self-sufficient P450-derived reductase PRF with promising production yield of 9OHAD (9α-hydroxy4-androstene-3,17-dione) from AD, and further proved the importance of [2Fe-2S] clusters of ferredoxin-oxidoreductase in transferring electrons in steroidal conversion. The results of truncated Fdx domain in all oxidoreductases and mutagenesis data elucidated the indispensable role of [2Fe-2S] clusters in the electron transfer process.

View Article and Find Full Text PDF

d-Allulose is an attractive noncaloric sugar substitute with numerous health benefits, which can be biosynthesized by d-allulose 3-epimerases (DAEases). However, enzyme instability under harsh industrial reaction conditions hampered its practical applications. Here, we developed a continuous spectrophotometric assay (CSA) for the efficient analysis of d-allulose in a mixture.

View Article and Find Full Text PDF

The Δ1-dehydrogenation of 3-ketosteroid substrates is a crucial reaction in the production of steroids. Although 3-ketosteroid Δ1-dehydrogenase (KsdD) catalyzes this reaction with high efficiency and selectivity, the low stability and high cost of the purified enzyme catalyst have limited its industrial application. In this study, an epoxy support was used to evaluate the covalent immobilization of KsdD from Pimelobacter simplex, and the best androsta-1,4-diene-317-dione (ADD) production was achieved after optimized immobilization of KsdD enzyme in 1.

View Article and Find Full Text PDF