Publications by authors named "Canan Ozyurt"

Background: Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction.

View Article and Find Full Text PDF

Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management.

View Article and Find Full Text PDF

Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis.

View Article and Find Full Text PDF

In this study, we constructed a disposable indium tin oxide polyethylene terephthalate film (ITO-PET)-based electrochemical aptasensor for analyzing prostate-specific antigen (PSA), one of the most important biomarkers of prostate cancer. Because of their clinical importance, building PSA biosensing systems with high sensitivity and stability is essential. However, it still presents significant difficulties, such as low detection limits.

View Article and Find Full Text PDF

Almost from the time of its discovery, the prostate specific antigen (PSA) has been one of the most accurate and most extensively studied indicators of prostate cancer (PC). Because of advancements in biosensing systems and technology, PSA analysis methods have been substantially updated and enhanced as compared to their first instances. With the development of techniques in biosensor technology, the number of PSA biosensors that can be used in the biomedical sector is increasing year by year.

View Article and Find Full Text PDF

Salmonella Enteritidis is an important pathogen that can invade the intestinal cells of its host causing salmonellosis. SipA protein, an effector protein secreted by T3SS, maintains invasion of host cells more efficient. Thus, inhibitory aptamers against SipA protein were developed using magnetic bead-based Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method.

View Article and Find Full Text PDF

Mercury ion (Hg ) is a universal pollutant and its detection is crucial for public healthcare. In this study, we developed a novel fluorescent biosensor by construction of a protein fusion between the mercury-sensing transcription factor MerR and enhanced yellow fluorescent protein (EYFP). Hg -induced conformational change of MerR was transduced into fluorescence signal.

View Article and Find Full Text PDF

Sarcosine is an amino acid derivative, which is considered as a key metabolite in various metabolic processes. Therefore, simple and sensitive detection methods are needed for further understanding its metabolic role and diagnostic value. In this study, we developed a novel method that meets the need for practical and sensitive detection in a complex medium mimicking urine conditions.

View Article and Find Full Text PDF

Circularly permuted green fluorescent protein (cGFP) was inserted into the hyperthermophilic maltose binding protein at two different locations. cGFP was inserted between amino acid residues 206 and 207, or fused to the N-terminal of maltose binding protein from Thermotoga maritima. The cloned DNA constructs were expressed in Escherichia coli cells, and purified by metal chelate affinity chromatography.

View Article and Find Full Text PDF

We developed a fluorescent protein construct by genetically fusing green fluorescent protein (GFP) to aspartate dehydrogenase from Thermotoga maritima. The fusion protein was cloned, heterologously expressed in Escherichia coli cells, and purified by Ni-chelate affinity chromatography. It was then introduced into a measurement cuvette to monitor its fluorescence signal.

View Article and Find Full Text PDF