Publications by authors named "Canale-Parola E"

Two strains of obligately anaerobic, mesophilic, cellulolytic, N2-fixing, spore-forming bacteria were isolated from soil samples collected at two different locations near Amherst, MA, USA. Single cells of both strains were slightly curved rods that measured between 2 and 6 microm in length and approximately 0.5 microm in diameter.

View Article and Find Full Text PDF

Tethered-cell and capillary assays indicated that L-methionine is required by Cellulomonas gelida for its normal cell motility pattern and chemotaxis and that S-adenosylmethionine is involved in sugar chemotaxis by this cellulolytic bacterium. In addition, in vivo methylation assays showed that several proteins were methylated in the absence of protein synthesis. The incorporated methyl groups were alkali sensitive.

View Article and Find Full Text PDF

Transmission electron microscopy was used to investigate the ultrastructural features of diverse cellulase and cellulase-xylanase multiprotein complexes that are components of the cellulase-xylanase system of Clostridium papyrosolvens C7. The multiprotein complexes were separated by anion-exchange chromatography into seven biochemically distinguishable fractions (F1 to F7). Most individual F fractions contained, in relatively large numbers, an ultrastructurally recognizable type of particle that occurred only in smaller numbers, or not at all, in the other F fractions.

View Article and Find Full Text PDF

The cellulase system of Clostridium papyrosolvens C7 was fractionated by means of ion-exchange chromatography into at least seven high-molecular-weight multiprotein complexes, each with different enzymatic and structural properties. The molecular weights of the complexes, as determined by gel filtration chromatography, ranged from 500,000 to 660,000, and the isoelectric points ranged from 4.40 to 4.

View Article and Find Full Text PDF

In the course of a study on the bacterial degradation of plant cell wall polysaccharides, we observed that growing cells of motile cellulolytic bacteria accumulated, without attachment, near cellulose fibers present in the cultures. Because it seemed likely that the accumulation was due to chemotactic behavior, we investigated the chemotactic responses of one of the above-mentioned bacteria (Cellulomonas gelida ATCC 488). We studied primarily the responses toward cellobiose, which is the major product of cellulose hydrolysis by microorganisms, and toward hemicellulose hydrolysis products.

View Article and Find Full Text PDF

An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides.

View Article and Find Full Text PDF

The enzymatic activity responsible for crystalline cellulose degradation (Avicelase activity) by a mesophilic clostridium (strain C7) was present in culture supernatant fluid but was not detected in significant amounts in association with whole cells or in disrupted cells. Cells of the mesophilic clostridium lacked cellulosome clusters on their surface and did not adhere to cellulose fibers. The extracellular cellulase system of the mesophilic clostridium was fractionated by Sephracryl S-300 gel filtration, and the fractions were assayed for Avicelase and carboxymethylcellulase activities.

View Article and Find Full Text PDF

An intestinal bacterium isolated from a human subject utilized only two methylpentoses (L-rhamnose and L-fucose) and two pentoses (L-lyxose and D-arabinose) as fermentable substrates, among many compounds tested. The isolate was obligately anaerobic and had a distinctive morphology, its cells being rods bent in the shape of rings with the ends slightly overlapping. Single ring-shaped cells and left-handed helical chains of cells were present in cultures.

View Article and Find Full Text PDF

Four strains of anaerobic nitrogen-fixing, cellulose-fermenting bacteria were isolated in pure culture from freshwater mud and soil. Nitrogenase activity was demonstrated in these strains and also in several previously described anaerobic cellulolytic bacteria isolated from various natural environments. These are the first anaerobic bacteria known to use cellulose as an energy source for nitrogen fixation.

View Article and Find Full Text PDF

Studies on the physiological characteristics of two obligately anaerobic, rod-shaped bacteria from the human intestinal tract indicated that the organisms represented two previously undescribed species of Bacteroides, for which we propose the names Bacteroides pectinophilus (type strain, N3) and Bacteroides galacturonicus (type strain, N6). Both strains were pectinophilic; that is, they utilized as fermentable substrates for growth only pectin and a few related compounds. The two species differed significantly from each other in guanine plus cytosine content of the DNA, in substrate utilization patterns, and in other phenotypic characteristics.

View Article and Find Full Text PDF

Obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from the wetwood of elm and maple trees. The isolation of these bacteria involved inoculation of selective enrichment cultures with increment cores taken from trees showing evidence of wetwood. Cellulolytic bacteria were present in the cores from seven of nine trees sampled, as indicated by the disappearance of cellulose from enrichment cultures.

View Article and Find Full Text PDF

A large, obligately anaerobic spirochete (strain PB) was isolated from bovine rumen fluid by a procedure involving rifampin as a selective agent. The helical cells measured 0.6 to 0.

View Article and Find Full Text PDF

A selective procedure was used to isolate pectinolytic intestinal bacteria from human subjects. The three isolates with the greatest pectinolytic activity utilized pectin and a few related compounds as fermentable substrates for growth but did not utilize any other compound tested. Thus, their substrate utilization pattern was markedly different from that of previously described intestinal pectinolytic isolates.

View Article and Find Full Text PDF

Spirochaeta aurantia M1 cells were grown in a chemostat under conditions of energy and carbon source limitation. The chemotactic responses of the chemostat-grown cells were compared with those of S. aurantia cells grown in batch culture in the presence of excess energy and carbon source.

View Article and Find Full Text PDF

Five strains of obligately anaerobic, pectin-fermenting spirochetes were isolated from the subgingival plaque of humans. The strains produced two extracellular enzymatic activities that functioned in pectin degradation. One of these enzymatic activities was pectin methylesterase (EC 3.

View Article and Find Full Text PDF

Eight strains of obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from mud of freshwater environments. The isolates (C strains) were rod-shaped, gram negative, and formed terminal spherical to oval spores that swelled the sporangium. The guanine plus cytosine content of the DNA of the C strains ranged from 30.

View Article and Find Full Text PDF

Enzymatic activities that catalyze the interconversion of purines and purine derivatives were detected in cell extracts of Spirochaeta aurantia, Spirochaeta stenostrepta, Treponema succinifaciens, and Treponema denticola. Phosphoribosyltransferase activities present in cell extracts of each of the four spirochete species functioned in the conversion of adenine, hypoxanthine, and guanine to AMP, IMP, and GMP, respectively. Nucleotidase activities in the extracts mediated the formation of nucleosides from nucleotides.

View Article and Find Full Text PDF

Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation.

View Article and Find Full Text PDF

An obligately anaerobic spirochete, designated strain GS-2, was selectively isolated from samples collected at a deep-sea (2,550 m) hydrothermal vent of the Galapagos Rift ocean floor spreading center. The morphological and physiological characteristics of strain GS-2 resembled those of Spirochaeta strains. However, strain GS-2 failed to grow consistently in any liquid medium tested.

View Article and Find Full Text PDF

Bovine rumen fluid contained relatively large numbers of spirochetes capable of fermenting polymers commonly present in plant materials. Polymers such as xylan, pectin, and arabinogalactan served as fermentable substrates for the spirochetes, whereas cellulose did not. Furthermore, spirochetes cultured from rumen fluid utilized as growth substrates hydrolysis products of plant polymers (e.

View Article and Find Full Text PDF

An anaerobic marine spirochete (strain MA-2) fermented glucose and formed ethanol, acetic acid, CO(2), and H(2) as end products. The organism required carbohydrates as growth substrates. Amino acids did not support the growth of strain MA-2.

View Article and Find Full Text PDF

The metabolic pathways utilized by an obligately anaerobic marine spirochete (strain MA-2) to ferment branched-chain amino acids were studied. The spirochete catabolized l-leucine to isovaleric acid, l-isoleucine to 2-methylbutyric acid, and l-valine to isobutyric acid, with accompanying CO(2) production in each fermentation. Cell extracts of spirochete MA-2 converted l-leucine, l-isoleucine, and l-valine to 2-ketoisocaproic, 2-keto-3-methylvaleric, and 2-ketoisovaleric acids, respectively, through mediation of 2-ketoglutarate-dependent aminotransferase activities.

View Article and Find Full Text PDF

Spirochetes indigenous to the healthy gingival crevice of the human mouth were isolated directly from colonies in agar medium containing rifampin as a selective agent.

View Article and Find Full Text PDF

A saccharolytic spirochete that associated and interacted with cellulolytic bacteria was isolated from bovine rumen fluid. Isolation was accomplished by means of a procedure involving serial dilution of a sample of rumen fluid into a cellulose-containing agar medium. Clear zones appeared within the medium as a result of cellulose hydrolysis by rumen bacteria.

View Article and Find Full Text PDF