Publications by authors named "Can-Zeng Liang"

Thin film composite (TFC) hollow fiber membranes with ultrathin selective layer are desirable to maximize the gas permeance for practical applications. Herein, a bio-inspired strategy is proposed to fabricate sub-100-nm membranes via a tree-mimicking polymer network with amphipathic components featuring multifunctionalities. The hydrophobic polydimethylsiloxane (PDMS) brushes act as the roots that can strongly cling to the gutter layer, the PDMS crosslinkers function as the xylems to enable fast gas transport, and the hydrophilic ethylene-oxide moieties (brushes and mobile molecules) resemble tree leaves that selectively attract CO molecules.

View Article and Find Full Text PDF

Processable molecular-sieving membranes are important materials for realizing energy-efficient precombustion CO capture during industrial-scale hydrogen production. However, the promising design of mixed matrix membranes (MMMs) that aims to integrate the molecular-sieving properties of nanoporous architectures with industrial processable polymers still faces performance and fabrication issues due to the formation of segregated nanofiller domains in their polymer matrices. Here, an unconventional nanocomposite membrane design is proposed using soluble organic macrocyclic cavitands (OMCs) with tunable open cavity sizes that not only mitigate the formation the discrete nanofiller phases but also deliver distinct molecular-sieving separations.

View Article and Find Full Text PDF

Currently, cellulose acetate (CA) membranes dominate membrane-based CO separation for natural gas purification due to their economical and green nature. However, their lower CO permeability and ease of plasticization are the drawbacks. To overcome these weaknesses, we have developed high-performance mixed matrix membranes (MMMs) consisting of cellulose triacetate (CTA), cellulose diacetate (CDA), and amine functionalized zeolitic imidazolate frameworks (NH-ZIF-8) for CO separation.

View Article and Find Full Text PDF

Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials and their chemical structure for gas separation has been systematically investigated. A PPSU homopolymer and three kinds of 3,3',5,5'-tetramethyl-4,4'-biphenol (TMBP)-based polyphenylsulfone (TMPPSf) copolymers were synthesized by controlling the TMBP content.

View Article and Find Full Text PDF

Osmotically assisted reverse osmosis (OARO) has become an emerging membrane technology to tackle the limitations of a reverse osmosis (RO) process for water desalination. A strong membrane that can withstand a high hydraulic pressure is crucial for the OARO process. Here, we develop ultra-strong polymeric thin film composite (TFC) hollow fiber membranes with exceptionally high hydraulic burst pressures of up to 110 bar, while maintaining high pure water permeance of around 3 litre/(m h bar) and a NaCl rejection of about 98%.

View Article and Find Full Text PDF

In order to make membrane separation technologies more cost-competitive with the well-established processes that are energy intensive for gas/vapor separation, a defect-free membrane with a high gas permeance is necessary. However, it remains challenging to meet these needs because of the difficulties in developing a suitable material and process that are economical and practical. Herein, a novel and straightforward strategy is presented to produce a defect-free hollow fiber composite membrane using a highly crosslinked polydimethylsiloxane (PDMS) synthesized by using a postcrosslinking method.

View Article and Find Full Text PDF

A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage.

View Article and Find Full Text PDF