Power sources that can be charged anytime and anywhere are highly desirable for mobile devices. The most suitable device for achieving such wireless charging is a photocapacitor, which utilizes light as a renewable energy source instead of electricity from the grid. Sunlight on Earth is intermittent and unstable, so photocapacitors that can be charged by the day or room light and near-infrared (near-IR) radiation are needed to ensure the uninterrupted operation of the equipment.
View Article and Find Full Text PDFWe report here resistive switching memory characteristics of imidazolium lead iodide depending on the molar ratio of PbI2 to imidazolium iodide (ImI), that is, PbI2 : ImI = 1 : 0, 1 : 0.5, 1 : 1, 1 : 2, 1 : 3 and 0 : 1. X-ray diffraction confirms that the stoichiometric composition results in a hexagonal structure of (Im)PbI3, showing a one-dimensional face-sharing [PbI3-] chain.
View Article and Find Full Text PDFAs silicon-based metal oxide semiconductor field effect transistors get closer to their scaling limit, the importance of resistive random-access memory devices increases due to their low power consumption, high endurance and retention performance, scalability, and fast switching speed. In the last couple of years, organic-inorganic lead halide perovskites have been used for resistive switching applications, where they outperformed conventional metal oxides in terms of large on/off ratio and low power consumption. However, there were scarce reports on lead-free perovskites for such applications.
View Article and Find Full Text PDFCorrection for 'Wafer-scale reliable switching memory based on 2-dimensional layered organic-inorganic halide perovskite' by Ja-Young Seo, et al., Nanoscale, 2017, DOI: 10.1039/c7nr05582j.
View Article and Find Full Text PDFRecently, organic-inorganic halide perovskite (OHP) has been suggested as an alternative to oxides or chalcogenides in resistive switching memory devices due to low operating voltage, high ON/OFF ratio, and flexibility. The most studied OHP is 3-dimensional (3D) MAPbI. However, MAPbI often exhibits less reliable switching behavior probably due to the uncontrollable random formation of conducting filaments.
View Article and Find Full Text PDF