Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS). We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels. Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or pro-oxidant properties depending on the concentration and accumulation site.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder that, together with a rather characteristic neurocognitive profile, presents a strong cardiovascular phenotype. The cardiovascular features of WBS are mainly related to a gene dosage effect due to hemizygosity of the elastin () gene; however, the phenotypic variability between WBS patients indicates the presence of important modulators of the clinical impact of elastin deficiency. Recently, two genes within the WBS region have been linked to mitochondrial dysfunction.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare disorder caused by a recurrent microdeletion with hallmarks of cardiovascular manifestations, mainly supra-valvular aortic stenosis (SVAS). Unfortunately, there is currently no efficient treatment. We investigated the effect of chronic oral treatment with curcumin and verapamil on the cardiovascular phenotype of a murine model of WBS harbouring a similar deletion, CD (complete deletion) mice.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a chromosomic microdeletion (7q11.23). WBS has been modeled by a mouse line having a complete deletion (CD) of the equivalent mouse locus.
View Article and Find Full Text PDFFollowing a multi-disciplinary approach integrating information from several experimental models we have collected new evidence supporting, expanding and redesigning the AOP "Disrupted laminin/int-β1 interaction leading to decreased cognitive function". Investigations in vitro in rabbit and rat neurospheres and in vivo in mice exposed to EGCG (epigallocatechin-gallate) during neurodevelopment are combined with in vitro evaluations in neural progenitor cells overexpressing int-β1 and literature information from int-β1 deficiency models. We have discovered for the first time that neural progenitor cells from intrauterine growth restricted (IUGR) animals overexpress int-β1 at gene and protein level and due to this change in prenatal brain programming they respond differently than control neurospheres to the exposure of EGCG, a compound triggering neural progenitor cell migration alterations.
View Article and Find Full Text PDFBackground: Increasing evidence indicates that redox stress participates in MFS aortopathy, though its mechanistic contribution is little known. We reported elevated reactive oxygen species (ROS) formation and NADPH oxidase NOX4 upregulation in MFS patients and mouse aortae. Here we address the contribution of xanthine oxidoreductase (XOR), which catabolizes purines into uric acid and ROS in MFS aortopathy.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare genetic multisystemic disorder characterized by mild-to-moderate intellectual disability and hypersocial phenotype, while the most life-threatening features are cardiovascular abnormalities. Nowadays, there are no pharmacological treatments to directly ameliorate the main traits of WBS. The endocannabinoid system (ECS), given its relevance for both cognitive and cardiovascular function, could be a potential druggable target in this syndrome.
View Article and Find Full Text PDFImmune thrombotic thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy caused by anti-ADAMTS13 antibodies. Caplacizumab is approved for adults with an acute episode of iTTP in conjunction with plasma exchange (PEX) and immunosuppression. The objective of this study was to analyze and compare the safety and efficacy of caplacizumab vs the standard of care and assess the effect of the concomitant use of rituximab.
View Article and Find Full Text PDFIntroduction: The COVID-19 pandemic has impacted individuals across the world, and in particular, dramatically affected the experience of pregnancy and childbirth for many expectant mothers. The transition to parenthood is a time of increased risk for mental health problems, and maternal prenatal stress is associated with long-term maternal and infant health implications. The current study explored whether COVID-19 related changes to mothers' childbirth plans and prenatal health care experiences during the first wave of pandemic lockdowns in the U.
View Article and Find Full Text PDFIrruption of decitabine and azacitidine has led to profound changes in the upfront management of older acute myeloid leukaemia (AML). However, they have not been directly compared in a randomised clinical trial. In addition, there are no studies comparing the optimal treatment schedule of each drug in AML.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by a distinctive cognitive phenotype for which there are currently no effective treatments. We investigated the progression of behavioral deficits present in WBS complete deletion (CD) mice, after chronic treatment with curcumin, verapamil, and a combination of both. These compounds have been proven to have beneficial effects over different cognitive aspects of various murine models and, thus, may have neuroprotective effects in WBS.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2021
Objective: We investigated the effect of a potent TGFβ (transforming growth factor β) inhibitor peptide (P144) from the betaglycan/TGFβ receptor III on aortic aneurysm development in a Marfan syndrome mouse model.
Approach And Results: We used a chimeric gene encoding the P144 peptide linked to apolipoprotein A-I via a flexible linker expressed by a hepatotropic adeno-associated vector. Two experimental approaches were performed: (1) a preventive treatment where the vector was injected before the onset of the aortic aneurysm (aged 4 weeks) and followed-up for 4 and 20 weeks and (2) a palliative treatment where the vector was injected once the aneurysm was formed (8 weeks old) and followed-up for 16 weeks.
Connective tissue is known to provide structural and functional "glue" properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26-28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3-4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a rare neurodevelopmental disorder characterized by moderate intellectual disability and learning difficulties alongside behavioral abnormalities such as hypersociability. Several structural and functional brain alterations are characteristic of this syndrome, as well as disturbed sleep and sleeping patterns. However, the detailed physiological mechanisms underlying WBS are mostly unknown.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes' size.
View Article and Find Full Text PDFMice heterozygous for a complete deletion (CD) equivalent to the most common deletion found in individuals with Williams-Beuren syndrome (WBS) recapitulate relevant features of the neurocognitive phenotype, such as hypersociability, along with some neuroanatomical alterations in specific brain areas. However, the pathophysiological mechanisms underlying these phenotypes still remain largely unknown. We have studied the synaptic function and cognition in CD mice using hippocampal slices and a behavioral test sensitive to hippocampal function.
View Article and Find Full Text PDFWilliams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurobehavioral phenotype.
View Article and Find Full Text PDFBackground: Williams-Beuren syndrome (WBS, OMIM-194050) is a neurodevelopmental disorder with multisystemic manifestations caused by a 1.55-1.83 Mb deletion at 7q11.
View Article and Find Full Text PDFWilliams-Beuren syndrome is a developmental multisystemic disorder caused by a recurrent 1.55-1.83 Mb heterozygous deletion on human chromosome band 7q11.
View Article and Find Full Text PDFGeneral transcription factor (TFII-I) is a multi-functional protein involved in the transcriptional regulation of critical developmental genes, encoded by the GTF2I gene located on chromosome 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurodevelopmental features of Williams-Beuren syndrome (WBS).
View Article and Find Full Text PDFA hallmark feature of Williams-Beuren Syndrome (WBS) is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX)-mediated oxidative stress. DD mice, carrying a 0.
View Article and Find Full Text PDFBackground: GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I.
View Article and Find Full Text PDFLarge copy number variants (CNVs) have been recently found as structural polymorphisms of the human genome of still unknown biological significance. CNVs are significantly enriched in regions with segmental duplications or low-copy repeats (LCRs). Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of contiguous genes at 7q11.
View Article and Find Full Text PDFIntroduction And Development: Williams syndrome is a developmental disorder with an estimated prevalence of 1 in 7,500 newborns. Its phenotype is characterized by distinctive facial features, mild to moderate mental retardation and general cognitive deficits with a non-uniform profile, having problems in some areas (psychomotricity, visuospatial integration) and relative preservation of others (language, musicality), friendly personality, occasional hypercalcemia of infancy, and a vasculopathy with supravalvular aortic stenosis. Williams syndrome is caused by a submicroscopic deletion of 1.
View Article and Find Full Text PDF