Publications by authors named "Campos-Martin J"

The design of an active, effective, and economically viable catalyst for CO conversion into value-added products is crucial in the fight against global warming and energy demand. We have developed very efficient catalysts for reverse water-gas shift (rWGS) reaction. Specific conditions of the synthesis by combustion allow the obtention of macroporous materials based on nanosized Ni particles supported on a mixed oxide of high purity and crystallinity.

View Article and Find Full Text PDF

This work reports initial results on the effect of low concentrations (ppm level) of a stabilizing agent (2,6-di--butyl-4-methylphenol, BHT) present in an off-the-shelf solvent on the catalyst performance for the hydrogenolysis of γ-butyrolactone over Cu-ZnO-based catalysts. Tetrahydrofuran (THF) was employed as an alternative solvent in the hydrogenolysis of γ-butyrolactone. It was found that the Cu-ZnO catalyst performance using a reference solvent (1,4-dioxane) was good, meaning that the equilibrium conversion was achieved in 240 min, while a zero conversion was found when employing tetrahydrofuran.

View Article and Find Full Text PDF

A series of defect pyrochlores of the composition (H3O)1+pSb1+pTe1-pO6 have been prepared by ion exchange from K-containing pyrochlores K1+pSb1+pTe1-pO6 in sulfuric acid at 280 °C for 24 h. The structural characterization of the hydronium-containing pyrochlores, including the location of the H3O+ units within the three-dimensional framework, was possible from neutron powder diffraction data in undeuterated samples. The crystal structure for all the compounds is defined in the Fd3[combining macron]m space group, and consists of a covalent framework of SbVO6 and TeVIO6 octahedra distributed at random and connected by their vertices with (Sb,Te)-O1-(Sb,Te) angles close to 136°, conforming to large cages where the hydronium species are located off-center.

View Article and Find Full Text PDF

The monolacunary Keggin-type [PWO] (PW) heteropolyanion was immobilized on porous framework of mesoporous silicas, namely SBA-15 and an ethylene-bridged periodic mesoporous organosilica (PMOE). The supports were functionalized with a cationic group (-trimethoxysilypropyl--trimethylammonium, TMA) for the successful anchoring of the anionic polyoxometalate. The PW@TMA-SBA-15 and PW@TMA-PMOE composites were evaluated as heterogeneous catalysts in the oxidative desulfurization of a model diesel.

View Article and Find Full Text PDF

This report describes the draft genome sequence of UCO-SMC3, isolated from Müller slime. The reads were generated by a whole-genome sequencing (WGS) strategy on an Illumina MiSeq sequencer and were assembled into contigs with a total estimated size of 1,612,814 bp. A total of 2,455 genes were predicted, including 2,301 protein-coding sequences.

View Article and Find Full Text PDF

Lignocellulosic residues from energy crops offer a high potential to recover bioproducts and biofuels that can be used as raw matter for agriculture activities within a circular economy framework. Anaerobic digestion (AD) is a well-established driver to convert these residues into energy and bioproducts. However, AD of lignocellulosic matter is slow and yields low methane potential, and therefore several pre-treatment methods have been proposed to increase the energy yield of this process.

View Article and Find Full Text PDF

Mesocrystals (basically nanostructures showing alignment of nanocrystals well beyond crystal size) are attracting considerable attention for modeling and optimization of functionalities. However, for surface-driven applications (heterogeneous catalysis), only those mesocrystals with excellent textural properties are expected to fulfill their potential. This is especially true for oxidative desulfuration of dibenzothiophenes (hard to desulfurize organosulfur compounds found in fossil fuels).

View Article and Find Full Text PDF

Herein we show that species generated upon reaction of α-[Fe(CF3SO3)2(BPMCN)] (BPMCN = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane) with H2O2 (putatively [Fe(V)(O)(OH)(BPMCN)]) is able to efficiently oxidize H2 to H2O even in the presence of organic substrates, while species formed in the presence of acetic acid (putatively [Fe(V)(O)(OAc)(BPMCN)]) prefer organic substrate oxidation over H2 activation. Mechanistic implications have been analysed with the aid of computational methods.

View Article and Find Full Text PDF

This work describes a relatively simple methodology for efficiently deconstructing cellulose into monomeric glucose, which is more easily transformed into a variety of platform molecules for the production of chemicals and fuels. The approach undertaken herein first involves the dissolution of cellulose in an ionic liquid (IL), followed by a second reconstruction step aided by an antisolvent. The regenerated cellulose exhibited strong structural and morphological changes, as revealed by XRD and SEM analyses.

View Article and Find Full Text PDF

First direct images of cobalt nanoparticles covered by a few atomic layers thick TiO(x) moieties after reduction treatment of a Co/TiO(2) system with the simultaneous formation of Co-O-Ti bonds confirm the development of the SMSI decoration effect.

View Article and Find Full Text PDF

Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %.

View Article and Find Full Text PDF

The catalytic system formed by tungstic acid and its complexes with H2O2 and phenylphosphonic acid has been analyzed from the experimental and theoretical points of view. Previous structural studies by XRD proved the validity of the DFT proposed models and methodology. Hydrogen peroxide reacts with tungstic acid to form a peroxo complex.

View Article and Find Full Text PDF

Density functional theory was employed to calculate the adsorption/dissociation of H2 on gold surfaces, Au(111) and Au(100), and on gold particles from 0.7 (Au14) to 1.2 nm (Au29).

View Article and Find Full Text PDF

Hydrogen peroxide (H2O2) is widely used in almost all industrial areas, particularly in the chemical industry and environmental protection. The only degradation product of its use is water, and thus it has played a large role in environmentally friendly methods in the chemical industry. Hydrogen peroxide is produced on an industrial scale by the anthraquinone oxidation (AO) process.

View Article and Find Full Text PDF

Palladium catalysts supported on gamma-alumina (AN, AS), amorphous silica-alumina (ASA), and beta-zeolite (betaZ) were prepared with the aim to reduce the content of polycyclic aromatic hydrocarbons (PAHs) in diesel fuels. The removal of PAH compounds was evaluated with a model feed (toluene, naphthalene, and dibenzothiophene)that approached the composition of diesel fuel. The catalysts were characterized by N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, transmission electron microscopy, temperature-programmed reduction/temperature-programmed oxidation, Fourier transform (FT) IR of absorbed CO, and diffuse reflectance FT spectroscopy of adsorbed NH3.

View Article and Find Full Text PDF

A commercial mesoporous silica (Grace Davison) was chemically grafted with trimethylsilyl chloride (TMSCl) and hexamethyldisilanaze (HMDS). The silylation process brought about some reduction in the specific BET area, the pore volume, and the pore sizes of the samples. Thermogravimetric studies of the silylated samples revealed that the grafting process is kinetically controlled at short reaction times.

View Article and Find Full Text PDF

A simple procedure for the preparation of amorphous silica containing thiol groups which quantitatively affords sulfonic acid groups has been developed, resulting in site densities and activity for the esterification of acetic acid with methanol greater than a commercial Nafion silica composite.

View Article and Find Full Text PDF

Ti-containing polysiloxane epoxidation catalysts have been prepared by controlled hydrolysis of titanium- and alkylsilane precursors. These polysilkoxanes exhibit very high yields to epoxides in the epoxidation reaction of primary alkenes with organic hydroproxides.

View Article and Find Full Text PDF