Background: Long-COVID is defined as the persistency or development of new symptoms 3 months after the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other explanation. Common persistent symptoms are fatigue, sleep disturbances, post-exertional malaise (PEM), pain, and cognitive problems. Long-COVID is estimated to be present in about 65 million people.
View Article and Find Full Text PDFWe present a semi-analytical model that can accurately explain the working principle behind the recently reported electrically injected InGaAs/GaAs monolithic nano-ridge lasers and more importantly show how the model can be used to study the effect of device parameters on the spectral behavior, the slope efficiency and the threshold gain. We show that mode beating between the fundamental mode and a higher order mode is fundamental in the operation of these lasers. Analytical expressions for codirectional mode coupling are used in developing the round-trip laser model.
View Article and Find Full Text PDFSilicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFChronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes.
View Article and Find Full Text PDFChronic pain is the most prevalent disease worldwide, leading to substantial disability and socioeconomic burden. Therefore, it can be regarded as a public health disease and major challenge to scientists, clinicians and affected individuals. Behavioral lifestyle factors, such as, physical (in)activity, stress, poor sleep and an unhealthy diet are increasingly recognized as perpetuating factors for chronic pain.
View Article and Find Full Text PDFChronic pain is sustained, in part, through the intricate process of central sensitization (CS), marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways. Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in identifying therapeutic targets and developing primary preventive strategies.
View Article and Find Full Text PDFWe present an approach for the heterogeneous integration of InP semiconductor optical amplifiers (SOAs) and lasers on an advanced silicon photonics (SiPh) platform by using micro-transfer-printing (µTP). After the introduction of the µTP concept, the focus of this paper shifts to the demonstration of two C-band III-V/Si photonic integrated circuits (PICs) that are important in data-communication networks: an optical switch and a high-speed optical transmitter. First, a C-band lossless and high-speed Si Mach-Zehnder interferometer (MZI) switch is demonstrated by co-integrating a set of InP SOAs with the Si MZI switch.
View Article and Find Full Text PDFThis paper presents an experimental and theoretical investigation of a graphene-integrated electro-absorption modulator (EAM) based on a slot waveguide. Due to the enhanced light-matter interaction of graphene, the device exhibits an impressive modulation efficiency (0.038 dBµmV) and bandwidth (≈ 16 GHz).
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
WA detailed thermal analysis of a hybrid, flip-chip InP-Si DFB laser is presented in this work. The lasers were experimentally tested at different operating temperatures, which allowed for deriving their thermal performance characteristics: the temperature dependence of threshold current, lasing slope, and output spectrum. Using these data, the laser thermal resistance was calculated ( = 75.
View Article and Find Full Text PDFIn this work, we demonstrate for the first time a narrow-linewidth III-V-on-Si double laser structure with more than a 110 nm wavelength tuning range realized using micro-transfer printing (µTP) technology. Two types of pre-fabricated III-V semiconductor optical amplifiers (SOAs) with a photoluminescence (PL) peak around 1500 nm and 1550 nm are micro-transfer printed on two silicon laser cavities. The laser cavities are fabricated in imec's silicon photonics (SiPh) pilot line on 200 mm silicon-on-insulator (SOI) wafers with a 400 nm thick silicon device layer.
View Article and Find Full Text PDFWe demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2 derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations.
View Article and Find Full Text PDFWe introduce a new design space for optimizing III-V devices monolithically grown on Silicon substrates by extending the concept of nano-ridge engineering from binary semiconductors such as GaAs, InAs and GaSb to the ternary alloy InGaAs. This allows controlling the fundamental lattice constant of the fully relaxed ternary nano-ridge which thereby serves as a tunable base for the integration of diverse device hetero-layers. To demonstrate the flexibility of this approach, we realized an O-band nano-ridge laser containing three InGaAs quantum wells, which are pseudomorphically strained to an InGaAs nano-ridge base.
View Article and Find Full Text PDFWe present a loss-coupled distributed feedback microlaser, monolithically grown on a standard 300-mm Si wafer using nano-ridge engineering. The cavity is formed by integrating a metallic grating on top of the nano-ridge. This allows forming a laser cavity without etching the III-V material, avoiding damaged interfaces and the associated carrier loss.
View Article and Find Full Text PDFTo increase the manufacturing throughput and lower the cost of silicon photonics packaging, an alignment tolerant approach is required to simplify the process of fiber-to-chip coupling. Here, we demonstrate an alignment-tolerant expanded beam backside coupling interface (in the O-band) for silicon photonics by monolithically integrating microlenses on the backside of the chip. After expanding the diffracted optical beam from a TE-mode grating through the bulk silicon substrate, the beam is collimated with the aid of microlenses resulting in an increased coupling tolerance to lateral and longitudinal misalignment.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFToday, one of the key challenges of graphene devices is establishing fabrication processes that can ensure performance stability and repeatability and that can eventually enable production in high volumes. In this paper, we use up-scalable fabrication processes to demonstrate three five-channel wavelength-division multiplexing (WDM) transmitters, each based on five graphene-silicon electro-absorption modulators. A passivation-first approach is used to encapsulate graphene, which results in hysteresis-free and uniform performance across the five channels of each WDM transmitter, for a total of 15 modulators.
View Article and Find Full Text PDFIn Alpine regions changes in seasonal climatic parameters, such as temperature, rainfall, and snow amount have already been observed. Specifically, in the South Tyrol area, meteorological observations indicate that temperatures are increasing and the number of snow days has generally diminished over time with perennial snow line now observed at higher elevations. Changes in rainfall have also been observed with more events associated with higher temperatures in the summer season.
View Article and Find Full Text PDFWe demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4×50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit.
View Article and Find Full Text PDFWhile III-V lasers epitaxially grown on silicon have been demonstrated, an efficient approach for coupling them with a silicon photonics platform is still missing. In this paper, we present a novel design of an adiabatic coupler for interfacing nanometer-scale III-V lasers grown on SOI with other silicon photonics components. The starting point is a directional coupler, which achieves 100% coupling efficiency from the III-V lasing mode to the Si waveguide TE-like ground mode.
View Article and Find Full Text PDFA major problem in fruit cultivation in Flanders is replant disease due to a lack of uncultivated soils available for new plantings. Replant disease can cause poor growth and affect time to full production, however Arbuscular Mycorrhizal Fungi (AMF) can prove their usefulness with regard to these problems. To further investigate the effect of AMF on nematodes, different AMF species were amended to potted apple seedlings in the presence of the nematode .
View Article and Find Full Text PDFWe report on the heterogeneous integration of electrically pumped InP Fabry-Pérot lasers on a SOI photonic integrated circuit by transfer printing. Transfer printing is a promising micromanipulation technique that allows the heterogeneous integration of optical and electronic components realized on their native substrate onto a target substrate with efficient use of the source material, in a way that can be scaled to parallel manipulation and that allows mixing components from different sources onto the same target. We pre-process transfer printable etched facet Fabry-Pérot lasers on their native InP substrate, transfer print them into a trench defined in an SOI photonic chip and post-process the printed lasers on the target substrate.
View Article and Find Full Text PDFIn this paper we report a single mode InAs/GaAs quantum dot distributed feedback laser at 1.3 μm wavelength heterogeneously integrated on a Si photonics waveguide circuit. Single mode lasing around 1300 nm with a side-mode suppression ratio higher than 40 dB is demonstrated.
View Article and Find Full Text PDFWe report an 8 × 8 silicon photonic integrated Arrayed Waveguide Grating Router (AWGR) targeted for WDM routing applications in O-band. The AWGR was designed for cyclic-frequency operation with a channel spacing of 10 nm. The fabricated AWGR exhibits a compact footprint of 700 × 270 μm.
View Article and Find Full Text PDF