Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear.
View Article and Find Full Text PDFE3 ubiquitin ligases have been linked to developmental diseases including autism, Angelman syndrome (UBE3A), and Johanson-Blizzard syndrome (JBS) (UBR1). Here, we report variants in the E3 ligase UBR5 in 29 individuals presenting with a neurodevelopmental syndrome that includes developmental delay, autism, intellectual disability, epilepsy, movement disorders, and/or genital anomalies. Their phenotype is distinct from JBS due to the absence of exocrine pancreatic insufficiency and the presence of autism, epilepsy, and, in some probands, a movement disorder.
View Article and Find Full Text PDFIntroduction: Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) is a recently described syndromic disease linked to genetic variants. We present a novel variant associated with a phenotype of NEDDFSA in a pediatric patient presenting with multiple anomalies including bilateral congenital ptosis and blepharophimosis, floppy eyelids, telecanthus, downward palpebral slants, myopia, cryptorchidism, hallux valgus and developmental delay.
Methods: Genetic testing performed on a large panel revealed a likely pathogenic variant in the gene (heterozygous, c.
An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.
View Article and Find Full Text PDFBiallelic variants in phosphatidylinositol glycan anchor biosynthesis, class G (PIGG) cause hypotonia, intellectual disability, seizures, and cerebellar features. We present 8 patients from 6 families with a childhood-onset motor neuropathy and neurophysiology demonstrating variable motor conduction block and temporal dispersion. All individuals had a childhood onset tremor, 5 of 8 had cerebellar involvement, and 6 of 8 had childhood febrile seizures.
View Article and Find Full Text PDFBackground: To inform the development of a core outcome set (COS) for children and youth with mucopolysaccharidoses (MPS), we aimed to identify all outcomes and associated outcome measurement instruments that are reported in recent clinical trials and recommended as measurements in clinical management guidelines.
Methods: To identify English-language clinical trials and guidelines pertaining to MPS published between 2011 and mid-2021, we applied a comprehensive peer-reviewed search strategy to relevant databases and registers on May 16, 2021. Two reviewers independently screened retrieved citations and then full-text articles to determine eligibility for inclusion.
Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive.
View Article and Find Full Text PDFPurpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.
Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals.
Fibronectin (FN) serves as a critical organizer of extracellular matrix networks in two principal isoforms, the plasma FN and the cellular FN. While FN's pivotal role in various organ systems, including the blood vasculature, is well-established, its contribution to the development of the skeletal system is much less explored. Furthermore, the pathomechanisms of spondyloepiphyseal dysplasia caused by FN mutations remain elusive.
View Article and Find Full Text PDFThe vacuolar H-ATPase (V-ATPase) is a functionally conserved multimeric complex localized at the membranes of many organelles where its proton-pumping action is required for proper lumen acidification. The V-ATPase complex is composed of several subunits, some of which have been linked to human disease. We and others previously reported pathogenic dominantly acting variants in ATP6V1B2, the gene encoding the V1B2 subunit, as underlying a clinically variable phenotypic spectrum including dominant deafness-onychodystrophy (DDOD) syndrome, Zimmermann-Laband syndrome (ZLS), and deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures (DOORS) syndrome.
View Article and Find Full Text PDFFibronectin (FN) is a ubiquitous extracellular matrix glycoprotein essential for the development of various tissues. Mutations in FN cause a unique form of spondylometaphyseal dysplasia, emphasizing its importance in cartilage and bone development. However, the relevance and functional role of FN during skeletal development has remained elusive.
View Article and Find Full Text PDFHaploinsufficiency of the short stature homeobox-containing (SHOX) gene leads to a phenotypic spectrum ranging from Leri-Weill dyschondrosteosis (LWD) to SHOX-deficient short stature. SHOX nullizygosity leads to Langer mesomelic dysplasia. Pathogenic variants can include whole or partial gene deletions or duplications, point mutations within the coding sequence, and deletions of upstream and downstream regulatory elements.
View Article and Find Full Text PDFArthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome.
View Article and Find Full Text PDFMeier-Gorlin syndrome (MGORS) is an autosomal recessive disorder characterized by short stature, microtia, and patellar hypoplasia, and is caused by pathogenic variants of cellular factors involved in the initiation of DNA replication. We previously reported that biallelic variants in GINS3 leading to amino acid changes at position 24 (p.Asp24) cause MGORS.
View Article and Find Full Text PDFBackground: Triokinase and FMN cyclase (TKFC) is a bifunctional enzyme involved in fructose metabolism. Triokinase catalyses the phosphorylation of fructose-derived glyceraldehyde (GA) and exogenous dihydroxyacetone (DHA), while FMN cyclase generates cyclic FMN. TKFC regulates the antiviral immune response by interacting with IFIH1 (MDA5).
View Article and Find Full Text PDFIon channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons.
View Article and Find Full Text PDFDietary restriction (DR) delays aging, but the mechanism remains unclear. We identified polymorphisms in mtd, the fly homolog of OXR1, which influenced lifespan and mtd expression in response to DR. Knockdown in adulthood inhibited DR-mediated lifespan extension in female flies.
View Article and Find Full Text PDFTatton-Brown-Rahman syndrome (TBRS) is a rare autosomal dominant overgrowth syndrome first reported in 2014 and caused by pathogenic variants in the DNA methyltransferase 3A (DNMT3A) gene. All individuals reported to date share a phenotype of somatic overgrowth, dysmorphic features, and intellectual disability. Peripheral neuropathy was not described in these cases.
View Article and Find Full Text PDF