Some years ago, it was conjectured by the first author that the Chern-Simons perturbation theory of a 3-manifold at the trivial flat connection is a resurgent power series. We describe completely the resurgent structure of the above series (including the location of the singularities and their Stokes constants) in the case of a hyperbolic knot complement in terms of an extended square matrix (, )-series whose rows are indexed by the boundary parabolic -flat connections, including the trivial one. We use our extended matrix to describe the Stokes constants of the above series, to define explicitly their Borel transform and to identify it with state-integrals.
View Article and Find Full Text PDF