Publications by authors named "Campbell F R Mackenzie"

Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond.

View Article and Find Full Text PDF

A key challenge in developing emissive materials for organic light-emitting diodes is to optimize their colour saturation, which means targeting narrowband emitters. In this combined theoretical and experimental study, we investigate the use of heavy atoms in the form of trimethylsilyl groups as a tool to reduce the intensity of the vibrations in the 2-phenylpyridinato ligands of emissive iridium(III) complexes that contribute to the vibrationally coupled modes that broaden the emission profile. An underutilised computational technique, Frank-Condon vibrationally coupled electronic spectral modelling, was used to identify the key vibrational modes that contribute to the broadening of the emission spectra in known benchmark green-emitting iridium(III) complexes.

View Article and Find Full Text PDF

[2.2]Paracyclophane scaffolds have seen limited use as building blocks in supramolecular chemistry. Here, we report the synthesis and characterization of a 1D coordination polymer consisting of silver(I) ions bound to a [2.

View Article and Find Full Text PDF
Article Synopsis
  • A series of seven cationic copper(I) complexes with diphosphine ligands were investigated for their photophysical properties, particularly focusing on how the bite angle of the ligand affects their performance.
  • Several complexes demonstrated high photoluminescence quantum yields, reaching up to 98% in solution, and were used to create organic light-emitting devices that performed moderately well.
  • The study also presented first-time electrochemiluminescence (ECL) results for these complexes, indicating that those with reversible electrochemistry showed greater ECL efficiency and improved performance in light-emitting electrochemical cells.
View Article and Find Full Text PDF

High-efficiency pure blue phosphorescent organic light-emitting diodes (OLEDs) remain one of the grand challenges, principally because the emissive complexes employed either do not possess sufficiently high photoluminescence quantum yields or exhibit unsatisfactory Commission International de l'Éclairage (CIE) coordinates. Here two deep-blue-emitting homoleptic iridium(III) complexes are reported and OLEDs are demonstrated with CIE coordinates of (0.15, 0.

View Article and Find Full Text PDF