Transient receptor potential canonical (TRPC) channels are calcium channels with diverse expression profiles and physiological implications in the retina. Neurons and glial cells of rat retinas with photoreceptor degeneration caused by retinitis pigmentosa (RP) exhibit basal calcium levels that are above those detected in healthy retinas. Inner retinal cells are the last to degenerate and are responsible for maintaining the activity of the visual cortex, even after complete loss of photoreceptors.
View Article and Find Full Text PDFBaseline intracellular calcium levels are significantly higher in neuronal and glial cells of rat retinas with retinitis pigmentosa (RP). Although this situation could initiate multiple detrimental pathways that lead to cell death, we considered the possibility of TRPC1 being involved in maintaining calcium homeostasis in the retina by acting as a component of store-operated calcium (SOC) channels with special relevance during photoreceptor degeneration. In this study, we examined by Western blot the expression of TRPC1 in healthy control rat retinas (Sprague-Dawley, SD) and retinas with RP (P23H-1 rats).
View Article and Find Full Text PDFP23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer.
View Article and Find Full Text PDFDisturbances in calcium homeostasis due to canonical transient receptor potential (TRPC) and/or store-operated calcium (SOC) channels can play a key role in a large number of brain disorders. TRPC channels are plasma membrane cation channels included in the transient receptor potential (TRP) superfamily. The most widely distributed member of the TRPC subfamily in the brain is TRPC1, which is frequently linked to group I metabotropic glutamate receptors (mGluRs) and to the components of SOC channels.
View Article and Find Full Text PDFInhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG) -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO).
View Article and Find Full Text PDFCanonical transient receptor potential (TRPC) channels are plasma membrane cation channels included in the TRP superfamily. TRPC1 is expressed widely in the central nervous system and is linked to group I metabotropic glutamate receptors (mGluRs). In the auditory brainstem, TRPC1 expression has never been described, although group I mGluRs are present.
View Article and Find Full Text PDFKCNQ5/Kv7.5 is a low-threshold non-inactivating voltage-gated potassium channel preferentially targeted to excitatory endings in brain neurons. The M-type current is mediated by KCNQ5 channel subunits in monkey retinal pigment epithelium cells and in brain neurons.
View Article and Find Full Text PDFKCNQ5/Kv7.5, a low-threshold noninactivating voltage-gated potassium channel, is preferentially targeted to excitatory endings of auditory neurons in the adult rat brainstem. Endbulds of Held from auditory nerve axons on the bushy cells of the ventral cochlear nucleus (VCN) and calyces of Held around the principal neurons in the medial nucleus of the trapezoid body (MNTB) are rich in KCNQ5 immunoreactivity.
View Article and Find Full Text PDFCharacterization of retinal cells, cell transplants and gene therapies may be helped by pre-labeled retinal cells, such as those transfected with vectors for green fluorescent protein expression. The aim of this study was to analyze retinal cells and optic nerve components from transgenic green mice (GM) with the 'enhanced' green fluorescent protein (EGFP) gene under the control of the CAG promoter (a chicken β-actin promoter and a cytomegalovirus enhancer). The structural analysis and electroretinography recordings showed a normal, healthy retina.
View Article and Find Full Text PDFThe transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording.
View Article and Find Full Text PDFCajal-Retzius cells in layer 1 of the developing cerebral cortex and their product of secretion, reelin, an extracellular matrix protein, play a crucial role in establishing the correct lamination pattern in this tissue. As many studies into reelin signaling routes and pathological alterations are conducted in murine models, we used double-labeling and confocal microscopy to compare the distribution of the cell-specific markers, calretinin and calbindin, in reelin-immunoreactive cells during postnatal rat and mouse neocortical development. In the rat, neither calretinin nor calbindin colocalized with reelin in Cajal-Retzius cells at P0-P2.
View Article and Find Full Text PDFKv7.5/KCNQ5, a voltage-dependent potassium channel that generates a subthreshold K+ current (also called M-current), is localized in excitatory endings of auditory brainstem nuclei in the adult rat. Here, we focus on how specific targeting develops from birth to adulthood in the rat.
View Article and Find Full Text PDFKCNQ, also called Kv7, is a family of voltage-dependent potassium channels with important roles in excitability regulation. Of its five known subunits, KCNQ5/Kv7.5 is extensively expressed in the central nervous system and it contributes to the generation of M-currents.
View Article and Find Full Text PDFIn order to understand whether glutamatergic excitatory presynaptic input is an absolute requirement for the adult regulation of postsynaptic glutamate receptors we analyzed if a period of 11 days of excitatory deprivation affects the expression, distribution and Ca(2+) permeability of AMPA receptor subunits in the ventral cochlear nucleus of the rat. Bilateral cochlear ablations were performed in 30-day-old rats. After 11 days of survival, immunohistochemistry for GluR1, GluR2/3 and GluR4 AMPA receptor subunits showed no changes in the normal pattern of distribution, with GluR2/3 and GluR4 immunoreactivity predominating, and little GluR1.
View Article and Find Full Text PDFThe development and maintenance of the adult expression and distribution of Kv 1.1 and Kv 1.2, two voltage-dependent potassium channel subunits, were investigated in the anteroventral cochlear nucleus (AVCN) of the rat.
View Article and Find Full Text PDFKCC2 is a neuron-specific Cl- transporter whose role in adult central neurons is to maintain low intracellular Cl- concentrations and, therefore, generate an inward-directed electrochemical gradient for Cl- needed for the hyperpolarizing responses to the inhibitory amino acids GABA and glycine. We report that the KCC2 protein is intensely expressed in CN neurons and preferentially associated with plasma membrane domains, consistent with GABA and glycinergic-mediated inhibition in this auditory nucleus. Postnatal KCC2 expression and distribution patterns are similar in developing and adult CN neurons and do not match the time course of GABergic or glycinergic synaptogenesis.
View Article and Find Full Text PDFGrowth hormone secretion by the somatotroph cells depends upon the interaction between hypothalamic regulatory peptides, target gland hormones and a variety of growth factors acting in a paracrine or autocrine fashion. This review will be focused on recent data regarding the mechanism by which growth hormone-releasing hormone (GHRH) influences somatotroph cell function and the physiological role played by Ghrelin and leptin in the regulation of growth hormone (GH) secretion. It is well established that binding of GHRH to its receptor leads to activation of protein kinase A (PKA).
View Article and Find Full Text PDFThe present study is a morphological and quantitative analysis of protein kinase C-like immunoreactive (PKC-L ir) bipolar cells in the retinas of five different vertebrate species (chicken, tench, zebrafish, goldfish and rat). The morphology of PKC-L-ir bipolar cell axon terminals in fish differs significantly from those of chicken and rat retinas. Fish have bulky terminals whereas chicken and rat have their terminals in the form of small knob-shaped branches.
View Article and Find Full Text PDFWe have analyzed the immunolabeling with the antibody RT97, a good marker for ganglion cell axons in several species, in the normal and regenerating visual pathways of teleosts. We have demonstrated that RT97 antibody recognizes several proteins in the tench visual system tissues (105, 115, 160, 200, 325 and 335 kDa approximately). By using immunoprecipitation and Western blot we have found that after crushing the optic nerve the immunoreactivity to anti RT97 increased markedly in the optic nerve.
View Article and Find Full Text PDFMorphological evidence of a temporal parallelism between the appearance of the alpha isoform of protein kinase C (PKC) and some processes such as synaptogenesis in the plexiform layers of the chicken retina is offered. Immunostaining experiments were performed throughout embryonic, young and adult chicken life. The results help to understand the development of rod bipolar cells.
View Article and Find Full Text PDFHistochemistry for nucleoside diphosphatase was used to study the microglial cells in the adult tench retina. An abundant population of microglial cells was located in the vascular membrane, nerve fibre layer, inner and outer plexiform layers and scattered cells were observed in the inner nuclear layer. Rounded and amoeboid cells could be seen close to the vessel in the vascular membrane, bipolar cells in the nerve fibre layer and ramified cells in the rest of the layers.
View Article and Find Full Text PDFTo understand the role of neurotrophins in the visual system, we investigated the distribution of both neurotrophins and their receptors within the retina of a fish that has the capacity to spontaneously regenerate its optic nerve axons after lesion. Intact retinas and retinas from tench, whose optic nerve had been crushed, were analyzed by immunohistochemistry and in situ hybridization. Trk receptors were mainly immunolocalized in cells of the inner nuclear and ganglion cell layers, a distribution coincident with that of their mRNAs.
View Article and Find Full Text PDFRetinal ganglion cells of the fish have the spontaneous capacity to regenerate after nerve crush, a phenomenon known to be facilitated by nerve growth factor (NGF). We have studied the high-affinity NGF receptor TrkA, during the regeneration of the tench (Tinca tinca L.) optic nerve, using immunocytochemical techniques.
View Article and Find Full Text PDF1. Neurotrophins are molecules that regulate the survival, development and maintenance of specific functions in different populations of nerve cells. 2.
View Article and Find Full Text PDFThe location of several diencephalic and mesencephalic structures in the teleost fish, Tinca tinca, which have not been described previously, was made possible by injecting Fluoro-Gold, as an anterograde and retrograde tracer, into the optic nerve. In the pretectal area, we found the tractus opticus accessorius and the nucleus opticus dorsolateralis. We have made some specifications about the location and nomenclature of the branches belonging to the optic tracts and two nuclei also related to the visual system (the nucleus commissura posterior and the nucleus pretectalis periventricularis pars dorsalis).
View Article and Find Full Text PDF