Prader-Willi syndrome (PWS) and Angelman syndrome (AS) result from the disturbance of imprinted gene expression within human chromosome 15q11-q13. Some cases of PWS and AS are caused by microdeletions near the SNRPN gene that disrupt a regulatory element termed the imprinting center (IC). The IC has two functional components; an element at the promoter of SNRPN involved in PWS (PWS-IC) and an element 35 kilobases (kb) upstream of SNRPN involved in AS (AS-IC).
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes.
View Article and Find Full Text PDFPrader-Willi syndrome (PWS), most notably characterized by infantile hypotonia, short stature and morbid obesity, results from deficiencies in multiple genes that are subject to genomic imprinting. The usefulness of current mouse models of PWS has been limited by postnatal lethality in affected mice. Here, we report the survival of the PWS-imprinting center (IC) deletion mice on a variety of strain backgrounds.
View Article and Find Full Text PDF