Publications by authors named "Camilo Velez-Vega"

Phosphatidylinositol-3-kinase Alpha (PI3Kα) is a lipid kinase which regulates signaling pathways involved in cell proliferation. Dysregulation of these pathways promotes several human cancers, pushing for the development of anticancer drugs to target PI3Kα. One such medicinal chemistry campaign at Novartis led to the discovery of BYL719 (Piqray, Alpelicib), a PI3Kα inhibitor approved by the FDA in 2019 for treatment of HR+/HER2-advanced breast cancer with a PIK3CA mutation.

View Article and Find Full Text PDF

Protein lipidations are vital co/post-translational modifications that tether lipid tails to specific protein amino acids, allowing them to anchor to biological membranes, switch their subcellular localization, and modulate association with other proteins. Such lipidations are thus crucial for multiple biological processes including signal transduction, protein trafficking, and membrane localization and are implicated in various diseases as well. Examples of lipid-anchored proteins include the Ras family of proteins that undergo farnesylation; actin and gelsolin that are myristoylated; phospholipase D that is palmitoylated; glycosylphosphatidylinositol-anchored proteins; and others.

View Article and Find Full Text PDF

The yes-associated protein (YAP) regulates the transcriptional activity of the TEAD transcription factors that are key in the control of organ morphogenesis. YAP interacts with TEAD via three secondary structure elements: a β-strand, an α-helix, and an Ω-loop. Earlier results have shown that the β-strand has only a marginal contribution in the YAP:TEAD interaction, but we show here that it significantly enhances the affinity of YAP for the Drosophila homolog of TEAD, scalloped (Sd).

View Article and Find Full Text PDF

RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes, the intermediate steps that lead to RAF activation remain unclear.

View Article and Find Full Text PDF

Ras proteins are membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the properties of Ras in terms of dimerization/clustering on the cell membrane. To understand the effects of anionic lipids on key spatiotemporal properties of dimeric K-Ras4B, we perform all-atom molecular dynamics simulations of the dimer K-Ras4B in the presence and absence of Raf[RBD/CRD] effectors on two model anionic lipid membranes: one containing 78% mol DOPC, 20% mol DOPS, and 2% mol PIP2 and another one with enhanced concentration of anionic lipids containing 50% mol DOPC, 40% mol DOPS, and 10% mol PIP2.

View Article and Find Full Text PDF

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including β-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of β-lactamases, the primary resistance mechanism associated with β-lactam therapy in Gram-negative bacteria.

View Article and Find Full Text PDF

Protein-protein complex assembly is one of the major drivers of biological response. Understanding the mechanisms of protein oligomerization/dimerization would allow one to elucidate how these complexes participate in biological activities and could ultimately lead to new approaches in designing novel therapeutic agents. However, determining the exact association pathways and structures of such complexes remains a challenge.

View Article and Find Full Text PDF

The main protease (M) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M, a cysteine protease, have been determined, facilitating structure-based drug design. M plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins.

View Article and Find Full Text PDF

The main protease (M ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of M , a cysteine protease, have been determined, facilitating structure-based drug design. M plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins.

View Article and Find Full Text PDF

The Kv11.1 potassium channel, encoded by the human ether-a-go-go-related gene (hERG), plays an essential role in the cardiac action potential. hERG blockade by small molecules can induce "torsade de pointes" arrhythmias and sudden death; as such, it is an important off-target to avoid during drug discovery.

View Article and Find Full Text PDF

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii.

View Article and Find Full Text PDF

Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e..

View Article and Find Full Text PDF

The global emergence of antibiotic resistance, especially in Gram-negative bacteria, is an urgent threat to public health. Discovery of novel classes of antibiotics with activity against these pathogens has been impeded by a fundamental lack of understanding of the molecular drivers underlying small molecule uptake. Although it is well-known that outer membrane porins represent the main route of entry for small, hydrophilic molecules across the Gram-negative cell envelope, the structure-permeation relationship for porin passage has yet to be defined.

View Article and Find Full Text PDF

Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design.

View Article and Find Full Text PDF

A statistical-mechanical framework for estimation of solvation entropies and enthalpies is proposed, which is based on the analysis of water as a mixture of correlated water oxygens and water hydrogens. Entropic contributions of increasing order are cast in terms of a Mutual Information Expansion that is evaluated to pairwise interactions. In turn, the enthalpy is computed directly from a distance-based hydrogen bonding energy algorithm.

View Article and Find Full Text PDF

Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced.

View Article and Find Full Text PDF

This article addresses calculations of the standard free energy of binding from molecular simulations in which a bound ligand is extracted from its binding site by steered molecular dynamics (MD) simulations or equilibrium umbrella sampling (US). Host-guest systems are used as test beds to examine the requirements for obtaining the reversible work of ligand extraction. We find that, for both steered MD and US, marked irreversibilities can occur when the guest molecule crosses an energy barrier and suddenly jumps to a new position, causing dissipation of energy stored in the stretched molecule(s).

View Article and Find Full Text PDF

Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability.

View Article and Find Full Text PDF

The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments.

View Article and Find Full Text PDF

The conformational behavior of the wild-type amyloid β-42 (Aβ-42) monomer and two of its mutants was explored via all-atom replica exchange molecular dynamics simulations in explicit solvent, to identify structural features that may promote or deter early-stage oligomerization. The markers used for this purpose indicate that while the three peptides are relatively flexible they have distinct preferential structures and degree of rigidity. In particular, we found that one mutant that remains in the monomeric state in experiments displays a characteristic N-terminal structure that significantly enhances its rigidity.

View Article and Find Full Text PDF

The native-to-loop (N-L) unfolding transition of Trp-cage protein was studied via optimized forward flux sampling (FFS) methods with trajectories evolved using molecular dynamics. The rate constant calculated from our simulations is in good agreement with the experimental value for the native-to-unfolded transition of this protein; furthermore, the trajectories sampled a phase region consistent with that reported in previous studies for the N-L transition using transition path sampling and transition interface sampling. A new variant of FFS is proposed and implemented that allows a better control of a constant flux of partial paths.

View Article and Find Full Text PDF

Forward flux sampling (FFS) simulations were used to study the kinetics of alanine dipeptide both in vacuum and in explicit solvent. The recently proposed FFS least-squares estimation approach and an algorithm that optimizes the position of the interfaces were implemented to determine a reaction coordinate that adequately describes the transition dynamics. A new method is also introduced to try to ensure that the ensemble of "starting points" (for the trial trajectories) is properly sampled.

View Article and Find Full Text PDF

In this work, wildtype and mutated hypervariable regions of an anti-hCG llama VHH antibody were simulated via a molecular dynamics replica exchange method (REM). Seven mutants were simulated with the goal of identifying structural determinants that return the noncanonical H1 loop of the wildtype antibody to the type 1 canonical structure predicted by database methods formulated for conventional antibodies. Two cases with three point mutations yielded a stable type 1 H1 structure.

View Article and Find Full Text PDF