Publications by authors named "Camilo Velez"

Objective: The objective of this study is to design a physical model of a magnetic filtration system which can separate magnetic nanoparticle (MNP)-tagged cytokines from fluid at physiologically relevant flow rates employed during cardiopulmonary bypass (CPB) procedures.

Methods: The Navier-Stokes equations for the pressure driven flow in the chamber and the quasistatic stray magnetic field produced by an array of permanent magnets were solved using finite element analysis in COMSOL Multiphysics for 2D and 3D representations of the flow chamber. Parameters affecting the drag and magnetic forces including flow chamber dimensions, high gradient magnet array configurations, and particle properties, were changed and evaluated for their effect on MNP capture.

View Article and Find Full Text PDF

This article describes a versatile method to fabricate magnetic microstructures with complex two-dimensional geometric shapes using magnetically assembled iron oxide (Fe3O4) and cobalt ferrite (CoFe2O4) nanoparticles. Magnetic pole patterns are imprinted into magnetizable media, onto which magnetic nanoparticles are assembled from a colloidal suspension into defined shapes via the shaped magnetic field gradients. The kinetics of this assembly process are studied by evaluation of the microstructure features (e.

View Article and Find Full Text PDF

Goal: This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid.

Methods: Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time.

View Article and Find Full Text PDF