Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.
View Article and Find Full Text PDFA fully effective antimalarial vaccine must contain multiple proteins from the different development stages of Plasmodium falciparum parasites involved in host-cell invasion or their biologically active fragments. It must therefore include sporozoite molecules able to induce protective immunity by blocking the parasite's access to hepatic cells, and/or proteins involved in the development of this stage, amongst which are included the Liver Stage Antigen-1 (LSA-1) and the Sporozoite and Liver Stage Antigen (SALSA). Our studies have focused on the search for an association between the structure of high activity binding peptides (HABPs), including both conserved native and their modified analogues, and their ability to bind to the MHC Class II HLA-DR molecules during formation of the MHCII-peptide-TCR complex leading to inducing the appropriate immune response.
View Article and Find Full Text PDF