The 2019 coronavirus (COVID-19) can generate acute respiratory distress syndrome (ARDS), requiring advanced management within the Intensive Care Unit (ICU) using invasive mechanical ventilation (IMV However, managing this phenomenon has seen learning and improvements through direct experience. Therefore, this study aims were to describe the assessment of the different IMV variables in patients with post-COVID-19 hospitalized in the ICU and their relation with mortality. Observational and retrospective study.
View Article and Find Full Text PDFCoordinated membrane and cell wall synthesis is vital for maintaining cell integrity and facilitating cell division in bacteria. However, the molecular mechanisms that underpin such coordination are poorly understood. Here we uncover the pivotal roles of the staphylococcal proteins CozEa and CozEb, members of a conserved family of membrane proteins previously implicated in bacterial cell division, in the biosynthesis of lipoteichoic acids (LTA) and maintenance of membrane homeostasis in .
View Article and Find Full Text PDFHuman syncytin-1 and suppressyn are cellular proteins of retroviral origin involved in cell-cell fusion events to establish the maternal-fetal interface in the placenta. In cell culture, they restrict infections from members of the largest interference group of vertebrate retroviruses, and are regarded as host immunity factors expressed during development. At the core of the syncytin-1 and suppressyn functions are poorly understood mechanisms to recognize a common cellular receptor, the membrane transporter ASCT2.
View Article and Find Full Text PDFMaqui berries contain a high percentage of anthocyanins with high antioxidant and anti-inflammatory capacity but that are unstable in the colonic site. Nanocarriers based on polysaccharides and/or proteins can protect against the degradation of anthocyanins. The aim of this study was the nanoencapsulation of maqui extract (ME) in chitosan-tripolyphosphate (CTPP-ME), chenopodin (CH-ME), and chenopodin-alginate (CHA-ME).
View Article and Find Full Text PDFEukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event. Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
To overcome the thermodynamic and kinetic impediments of the Sabatier CO methanation reaction, the process must be operated under very high temperature and pressure conditions, to obtain an industrially viable conversion, rate, and selectivity. Herein, we report that these technologically relevant performance metrics have been achieved under much milder conditions using solar rather than thermal energy, where the methanation reaction is enabled by a novel nickel-boron nitride catalyst. In this regard, an in situ generated HOB⋅⋅⋅B surface frustrated Lewis's pair is considered responsible for the high Sabatier conversion 87.
View Article and Find Full Text PDFCompetence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall.
View Article and Find Full Text PDFColorectal invasion is an unusual late-stage presentation of metastatic primary mucinous ovarian cancer. In this article, we report a fatal case of a 65-year-old female who presented to our clinic with progressive weight loss, severe constipation, and postprandial early satiety. She underwent an esophagogastroduodenoscopy (EGD) and colonoscopy.
View Article and Find Full Text PDFPhosphocholine molecules decorating bacterial cell wall teichoic acids and outer-membrane lipopolysaccharide have fundamental roles in adhesion to host cells, immune evasion, and persistence. Bacteria carrying the operon that performs phosphocholine decoration synthesize phosphocholine after uptake of the choline precursor by LicB, a conserved transporter among divergent species. is a prominent pathogen where phosphocholine decoration plays a fundamental role in virulence.
View Article and Find Full Text PDFTransport of lipids across membranes is fundamental for diverse biological pathways in cells. Multiple ion-coupled transporters take part in lipid translocation, but their mechanisms remain largely unknown. Major facilitator superfamily (MFS) lipid transporters play central roles in cell wall synthesis, brain development and function, lipids recycling, and cell signaling.
View Article and Find Full Text PDFSingle domain antibodies (nanobodies) have been extensively used in mechanistic and structural studies of proteins and they pose an enormous potential as tools for developing clinical therapies, many of which depend on the inhibition of membrane proteins such as transporters. However, most of the methods used to determine the inhibition of transport activity are difficult to perform in high-throughput routines and depend on labeled substrates availability thereby complicating the screening of large nanobody libraries. Solid-supported membrane (SSM) electrophysiology is a high-throughput method, used for characterizing electrogenic transporters and measuring their transport kinetics and inhibition.
View Article and Find Full Text PDFLipoteichoic acids (LTAs) are essential cell-wall components in Gram-positive bacteria, including the human pathogen Staphylococcus aureus, contributing to cell adhesion, cell division and antibiotic resistance. Genetic evidence has suggested that LtaA is the flippase that mediates the translocation of the lipid-linked disaccharide that anchors LTA to the cell membrane, a rate-limiting step in S. aureus LTA biogenesis.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Lipoteichoic acids (LTA) are ubiquitous cell wall components of Gram-positive bacteria. In Staphylococcus aureus LTA are composed of a polymer with 1,3-linked glycerol phosphate repeating units anchored to the plasma membrane. The anchor molecule is a lipid-linked disaccharide (anchor-LLD) synthesized at the cytoplasmic leaflet of the membrane.
View Article and Find Full Text PDFThe ongoing development of single-particle cryo-electron microscopy (cryo-EM) is leading to fast data acquisition, data processing, and protein structure elucidation. Quick and reliable methods to go from protein purification and optimization to grid preparation will significantly improve the reach and power of cryo-EM. Such methods would particularly constitute a tremendous advantage in structural biology of membrane proteins, whose published structures stay still far behind the number of soluble protein structures.
View Article and Find Full Text PDFPglK is a lipid-linked oligosaccharide (LLO) flippase essential for asparagine-linked protein glycosylation in Campylobacter jejuni. Previously we have proposed a non-alternating-access LLO translocation mechanism, where postulated outward-facing states play a primary role. To investigate this unusual mechanistic proposal, we have determined a high-resolution structure of PglK that displays an outward semi-occluded state with the two nucleotide binding domains forming an asymmetric closed dimer with two bound ATPγS molecules.
View Article and Find Full Text PDFThe application of nanobodies as binding partners for structure stabilization in protein X-ray crystallography is taking an increasingly important role in structural biology. However, the addition of nanobodies to the crystallization matrices might complicate the optimization of the crystallization process, which is why analytical techniques to screen and characterize suitable nanobodies are useful. Here, we show how chemical cross-linking combined with high-mass matrix-assisted laser/desorption ionization mass spectrometry can be employed as a fast screening technique to determine binding specificities of intact nanobody•membrane protein complexes.
View Article and Find Full Text PDFPglK is an ABC transporter that flips a lipid-linked oligosaccharide (LLO) that serves as a donor in protein N-glycosylation. Previous structures revealed two inward-facing conformations, both with very large separations of the nucleotide binding domains (NBDs), and a closed, ADP-bound state that featured an occluded cavity. To investigate additional states, we developed conformation-sensitive, single-domain camelid nanobodies (Nb) and studied their effect on PglK activity.
View Article and Find Full Text PDFThe hyalinizing trabecular adenoma is a rare lesion of the thyroid. There is controversy in the literature about the correct name for this disease. Dr.
View Article and Find Full Text PDFNeurons in the brain can be damaged or lost from neurodegenerative disease, stroke, or traumatic injury. Although neurogenesis occurs in mammalian adult brains, the levels of natural neurogenesis are insufficient to restore function in these cases. Gene therapy has been pursued as a promising strategy to induce differentiation of neural progenitor cells into functional neurons.
View Article and Find Full Text PDF